This paper proposes a procedure for obtaining the load distribution in a four contact-point slewing bearing considering the effect of the structure’s elasticity. The uneven stiffness of the rings and the supporting structures creates a variation with respect to the results obtained with a rigid model. It is necessary to evaluate the effect of the elasticity on the increase in the contact forces in order to be able to design the slewing bearing and the structures involved in the connection. Depending on the shape of the structures, the contact force value obtained on the most loaded rolling element is different. The evaluation of this maximum force at extreme loads is essential to design the structures joined to the bearing rings. The new elastic model presented in this paper is highly nonlinear so iterative loops are needed in order to obtain a satisfactory solution. At the same time a finite element model (FEM) has been created for the global model, having also represented the rolling elements and their contact with the raceways. The results obtained using the FEM have been correlated with the results of the new procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.