Processing images represents a necessary step in the process of analysing the information gathered about nanoparticles after characteristic material samples have been scanned with electron microscopy, which often requires the use of image processing techniques or general purpose image manipulation software to carry out tasks such as nanoparticle detection and measurement. In recent years, the use of networks has been successfully implemented to detect and classify electron microscopy images as well as the objects within them. In this work, we present four detection models using two versions of the YOLO neural network architectures trained to detect cubical and quasi-spherical particles in SEM images; the training datasets are a mixture of real images and synthetic ones generated by a semi-arbitrary method. The resulting models were capable of detecting nanoparticles in images different than the ones used for training and identifying them in some cases as the close proximity between nanoparticles proved a challenge for the neural networks in most situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.