Maze navigation is a recurring challenge in robotics competitions, where the aim is to design a strategy for one or several entities to traverse the optimal path in a fast and efficient way. To do so, numerous alternatives exist, relying on different sensing systems. Recently, camera-based approaches are becoming increasingly popular to address this scenario due to their reliability and given the possibility of migrating the resulting technologies to other application areas, mostly related to human-robot interaction. The aim of this paper is to present a pipeline methodology towards enabling a robot solving maze autonomously, by means of computer vision and path planning. Afterwards, the robot is capable of communicating the learned experience to a second robot, which then will solve the same challenge considering its own mechanical characteristics which may differ from the first robot. The pipeline is divided into four steps: (1) camera calibration (2) maze mapping (3) path planning and (4) communication. Experimental validation shows the efficiency of each step towards building this pipeline.
Maze navigation using one or more robots has become a recurring challenge in scientific literature and real life practice, with fleets having to find faster and better ways to navigate environments such as a travel hub, airports, or for evacuation of disaster zones. Many methodologies have been explored to solve this issue, including the implementation of a variety of sensors and other signal receiving systems. Most interestingly, camera-based techniques have become more popular in this kind of scenarios, given their robustness and scalability. In this paper, we implement an end-to-end strategy to address this scenario, allowing a robot to solve a maze in an autonomous way, by using computer vision and path planning. In addition, this robot shares the generated knowledge to another by means of communication protocols, having to adapt its mechanical characteristics to be capable of solving the same challenge. The paper presents experimental validation of the four components of this solution, namely camera calibration, maze mapping, path planning and robot communication. Finally, we showcase some initial experimentation in a pair of robots with different mechanical characteristics. Further implementations of this work include communicating the robots for other tasks, such as teaching assistance, remote classes, and other innovations in higher education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.