During the design of embedded systems, many design decisions have to be made to trade off between conflicting objectives such as cost, performance, and power. Approximate computing allows to optimize each objective, yet for the sake of accuracy. This means that a functional flaw is allowed to produce an error as long as this is small enough to maintain a feasible operation of the system or guarantee a certain accuracy of the results. In this paper, we propose a new technique for approximate addition optimized for LUT-Based FPGAs with segmented carry chains. Our optimized adder structure is able to a) best exploit artifacts of LUT-Based FPGAs such as unused inputs and b) provide a smaller average error than previously proposed approximate adder structures, as well as c) a reduced critical path delay than dedicated accurate logic in modern FPGAs. We present a novel stochastic error calculus that is able to take into account also non-uniform input distributions and present a detailed comparison of approximate adder structures proposed in literature with our novel LUT-Based approximate arithmetic structure.
In this paper, we propose a novel approximate adder structure for LUT-based FPGA technology. Compared with a full featured accurate carry-ripple adder, the longest path is significantly shortened which enables the clocking with an increased clock frequency. By using the proposed adder structure, the throughput of an FPGA-based implementation can be significantly increased. On the other hand, the resulting average error can be reduced compared to similar approaches for ASIC implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.