A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96. The proposed radii show a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking, notably the noble gases. The proposed set of radii therefore fills most of the gaps and solves some inconsistencies in currently used covalent radii. The transition metal and lanthanide contractions as well as the differences in covalent atomic radii between low spin and high spin configurations in transition metals are illustrated by the proposed radii set.
Alkane molecules are held together in the crystal state by purportedly weak homonuclear R-H···H-R dihydrogen interactions. In an apparent contradiction, the high melting points and vaporization enthalpies of polyhedranes in condensed phases require quite strong intermolecular interactions. Two questions arise: 'How strong can a weak C-H···H-C bond be?' and 'How do the size and topology of the carbon skeleton affect these bonding interactions?' A systematic computational study of intermolecular interactions in dimers of n-alkanes and polyhedranes, such as tetrahedrane, cubane, octahedrane or dodecahedrane, showed that attractive C-H···H-C interactions are stronger than usually thought. We identified factors that account for the strength of these interactions, including the tertiary nature of the carbon atoms and their low pyramidality. An alkane with a bowl shape was designed in the search for stronger dihydrogen intermolecular bonding, and a dissociation energy as high as 12 kJ mol⁻¹ is predicted by our calculations.
The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.
To understand the dispersion stabilization of hydrocarbons in solids and of encumbered molecules, wherein CH···HC interactions act as sticky fingers, we developed here a valence bond (VB) model and applied it to analyze the H···H interactions in dimers of H2 and alkanes. The VB analysis revealed two distinct mechanisms of "dispersion." In the dimers of small molecules like H-H···H-H and H3CH···HCH3, the stabilization arises primarily due to the increased importance of the VB structures which possess charge alternation, e.g., C(+)H(-)···H(+)C(-) and C(-)H(+)···H(-)C(+), and hence bring about electrostatic stabilization that holds the dimer. This is consistent with the classical mechanism of oscillating dipoles as the source of dispersion interactions. However, in larger alkanes, this mechanism is insufficient to glue the two molecules together. Here, the "dispersion" interaction comes about through perturbational mixing of VB structures, which reorganize the bonding electrons of the two interacting CH bonds via recoupling of these electrons to H···H, C···C, and C···H "bonds." Finally, an attempt is made to create a bridge from VB to molecular orbital (MO) and local pair natural-orbital coupled electron pair approximation (LPNO-CEPA/1) analyses of the interactions, which bring about CH···HC binding.
Herein we analyze the accessibility of the trigonal-prismatic geometry to metal complexes with different electron configurations, as well as the ability of several hexadentate ligands to favor that coordination polyhedron. Our study combines i) a structural database analysis of the occurrence of the prismatic geometry throughout the transition-metal series, ii) a qualitative molecular orbital analysis of the distortions expected for a trigonal-prismatic geometry, and iii) a computational study of complexes of several transition-metal ions with different hexadentate ligands. Also the tendency of specific electron configurations to present a cis bond-stretch Jahn-Teller distortion is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.