Electronic cigarettes (e-cigarettes), also known as electronic nicotine delivery systems, are a popular alternative to conventional nicotine cigarettes, both among smokers and those who have never smoked. In spite of the widespread use of e-cigarettes and the proposed detrimental cardiac and atherosclerotic effects of nicotine, the effects of e-cigarettes on these systems are not known. In this study, we investigated the cardiovascular and cardiac effects of e-cigarettes with and without nicotine in apolipoprotein-E knockout (ApoE−/−) mice. We developed an e-cigarette exposure model that delivers nicotine in a manner similar to that of human e-cigarettes users. Using commercially available e-cigarettes, bluCig PLUS, ApoE−/− mice were exposed to saline, e-cigarette without nicotine [e-cigarette (0%)], and e-cigarette with 2.4% nicotine [e-cigarette (2.4%)] aerosol for 12 wk. Echocardiographic data show that mice treated with e-cigarette (2.4%) had decreased left ventricular fractional shortening and ejection fraction compared with e-cigarette (0%) and saline. Ventricular transcriptomic analysis revealed changes in genes associated with metabolism, circadian rhythm, and inflammation in e-cigarette (2.4%)-treated ApoE−/− mice. Transmission electron microscopy revealed that cardiomyocytes of mice treated with e-cigarette (2.4%) exhibited ultrastructural abnormalities indicative of cardiomyopathy. Additionally, we observed increased oxidative stress and mitochondrial DNA mutations in mice treated with e-cigarette (2.4%). ApoE−/− mice on e-cigarette (2.4%) had also increased atherosclerotic lesions compared with saline aerosol-treated mice. These results demonstrate adverse effects of e-cigarettes on cardiac function in mice. NEW & NOTEWORTHY The present study is the first to show that mice exposed to nicotine electronic cigarettes (e-cigarettes) have decreased cardiac fractional shortening and ejection fraction in comparison with controls. RNA-seq analysis reveals a proinflammatory phenotype induced by e-cigarettes with nicotine. We also found increased atherosclerosis in the aortic root of mice treated with e-cigarettes with nicotine. Our results show that e-cigarettes with nicotine lead to detrimental effects on the heart that should serve as a warning to e-cigarette users and agencies that regulate them.
The use of electronic nicotine delivery systems (ENDS), also known as e-cigarettes, with a variety of e-liquids/e-juices, is increasing at an alarming rate among adolescents who do not realize their potential harmful health effects. This study examines the harmful effects of ENDS on the liver. Apolipoprotein E null (ApoE−/−) mice on a western diet (WD) were exposed to saline or ENDS with 2.4% nicotine aerosol for 12 weeks using our newly developed mouse ENDS exposure model system that delivers nicotine to mice that leads to equivalent serum cotinine levels found in human cigarette users. ApoE−/− mice on a WD exposed to ENDS exhibited a marked increase in hepatic lipid accumulation compared to ApoE−/− on a similar diet exposed to saline aerosol. The detrimental effects of ENDS on hepatic steatosis were associated with significantly greater oxidative stress, increased hepatic triglyceride levels and increased hepatocyte apoptosis, independent of AMP-activated protein kinase (AMPK) signaling. In addition, hepatic RNA seq analysis revealed that 433 genes were differentially expressed in ENDS-exposed mice on WD compared to saline-exposed mice. Functional analysis indicates that genes associated with lipid metabolism, cholesterol biosynthesis, and circadian rhythm were most significantly altered in the liver in response to ENDS. These results demonstrate profound adverse effects of ENDS on the liver. This is important information for regulatory agencies as they regulate ENDS.
CLP-1 expression in developing heart and isolated post-natal cardiomyocytes colocalizes with P-TEFb expression and therefore has the potential to regulate RNA transcript elongation by controlling P-TEFb cdk9 kinase activity in heart. We further conclude that the dissociation of CLP-1 from P-TEFb is responsive to hypertrophic stimuli transduced by cellular signal transduction pathways. This process may be part of the genomic stress response resulting in increased RNA transcript synthesis in hypertrophic cardiomyocytes.
In spite of the widespread use of electronic cigarettes, also known as e-cigarettes, and the proposed adverse cardiac effects of nicotine, the detrimental effects of e-cigarettes on the heart are not well known. This study examines the detrimental effects of e-cigarettes with nicotine at doses that yield circulating nicotine and cotinine in the ranges similar to the levels found in habitual smokers, and a high fat diet (HFD) on cardiac structure and function in a commonly used model of diet-induced obesity (DIO). C57BL/6J mice on an HFD were exposed to e-cigarette in the presence (2.4% nicotine) or absence (0% nicotine) of nicotine and saline aerosol for 12 weeks. Echocardiographic data demonstrated a decrease in left ventricular (LV) fractional shortening, LV ejection fraction, and velocity of circumferential fiber shortening (VCF) in mice treated with e-cigarette (2.4% nicotine) compared to e-cigarette (0% nicotine) or saline exposed mice. Cardiomyocytes (CMs) of mice treated with ecigarette (2.4% nicotine) exhibited LV abnormalities, including lipid accumulation (ventricular steatosis), myofibrillar derangement and destruction, and mitochondrial hypertrophy, as revealed by transmission electron microscopy. The detrimental effects of e-cigarettes (2.4% nicotine) on cardiac structure and function was accompanied by increased oxidative stress, plasma free fatty acid levels, CM apoptosis, and inactivation of AMP-activated protein kinase and activation of its downstream target, acetyl-CoA-carboxylase. Our results indicate profound adverse effects of e-cigarettes (2.4% nicotine) on the heart in obese mice and raise questions about the safety of the nicotine e-cigarettes use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.