Auto-focused virtual source imaging (AVSI) has been recently presented as an alternative method for synthetic aperture focusing through arbitrarily shaped interfaces with arrays. This paper extends the AVSI concept to the case of the total focusing method (TFM-AVSI) using several virtual receivers for each virtual source. This approach overcomes the known contrast limitation of AVSI, while preserving the advantage of performing synthetic focusing in the second medium only [no time-of-flight (TOF) calculations through the interface]. In contrast, equipment with more active channels must be used to digitalize the signals received by all the array elements after each focused emission. When compared with the conventional TFM, the proposed method reduces the processing complexity of the most time consuming task: TOF calculation in the presence of interfaces. This improvement could lead to more efficient real-time implementations of the TFM in non-destructive testing applications where water immersion or flexible wedges are used. In this paper, the mathematical formulation for the new method is given, accounting for the surface slope and the array angular sensitivity. Its performance is evaluated by numerical simulation, experimentally and compared with AVSI and the conventional TFM. It was found that the TFM-AVSI achieves the same resolution and contrast as that of the TFM, although it shows a wider blind zone below the interface due to focusing with normal incidence.
Ultrasound is used for breast cancer detection as a technique complementary to mammography, the standard screening method. Current practice is based on reflectivity images obtained with conventional instruments by an operator who positions the ultrasonic transducer by hand over the patient's body. It is a non-ionizing radiation, pain-free and not expensive technique that provides a higher contrast than mammography to discriminate among fluid-filled cysts and solid masses, especially for dense breast tissue. However, results are quite dependent on the operator's skills, images are difficult to reproduce, and state-of-the-art instruments have a limited resolution and contrast to show micro-calcifications and to discriminate between lesions and the surrounding tissue. In spite of their advantages, these factors have precluded the use of ultrasound for screening.This work approaches the ultrasound-based early detection of breast cancer with a different concept. A ring array with many elements to cover 360• around a hanging breast allows obtaining repeatable and operator-independent coronal slice images. Such an arrangement is well suited for multi-modal imaging that includes reflectivity, compounded, tomography, and phase coherence images for increased specificity in breast cancer detection. Preliminary work carried out with a mechanical emulation of the ring array and a standard breast phantom shows a high resolution and contrast, with an artifact-free capability provided by phase coherence processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.