The highly interactive nature of predator-prey relationship is essential for ecosystem conservation; predators have been extirpated, however, from entire ecosystems all over the Earth. Reintroductions comprise a management technique to reverse this trend. Species Distribution Models (SDM) are preemptive tools for release-site selection, and can define levels of habitat quality over the species distribution. The Atlantic Forest of South America has lost most of its apex predators, and Harpy Eagles Harpia harpyja —Earth’s largest eagle—are now limited to few forest pockets in this domain. Harpy Eagles are supposedly widespread in the Amazon Forest, however, where habitat loss and degradation is advancing at a rapid pace. We aim to describe the suitability of threatened Amazonian landscapes for this eagle. We also aim to assess the suitability of remaining Atlantic Forest sites for Harpy Eagle reintroductions. Here we show that that considerable eagle habitat has already been lost in Amazonia due to the expansion of the “Arc of Deforestation”, and that Amazonian forests currently represent 93% of the current distribution of the species. We also show that the Serra do Mar protected areas in southeastern Brazil is the most promising region for Harpy Eagle reintroductions in the Atlantic Forest. Reintroduction and captive breeding programs have been undertaken for Harpy Eagles, building the technical and biological basis for a successful restoration framework. Our distribution range for this species represents a 41% reduction of what is currently proposed by IUCN. Furthermore, habitat loss in Amazonia, combined with industrial logging and hunting suggest that the conservation status of this species should be reassessed. We suggest researchers and conservation practitioners can use this work to help expand efforts to conserve Harpy Eagles and their natural habitats.
Large-seeded plants are especially vulnerable to the loss of seed dispersers in small forest fragments. The palm Attalea humilis goes against this trend by reaching high abundances in small remnants. Productivity, seed dispersal and seed predation of A. humilis were investigated in two large (2400 and 3500 ha) and three small (19, 26 and 57 ha) Atlantic Forest fragments in southeastern Brazil. Palms in the small fragments produced more female inflorescences, resulting in a higher fruit production in these places. Seed dispersal rates were higher in the large fragments, where scatter hoarding was more frequent. Scolytine beetles were the main seed predators and damaged a larger number of seeds in small fragments, but predation by rodents and bruchine beetles was low irrespective of fragment size. As scolytines do not necessarily kill the seeds, low predation by bruchines and rodents, together with its own high productivity, allow A. humilis to be more abundant in small fragments despite the scarcity of its main dispersers. This increased abundance, by its turn, can increase competitive interactions between A. humilis and other plants in small fragments. Thus, abundance patterns of A. humilis are a good example of fragmentation affecting the balance of ecological interactions in a complex way, emphasizing the role of preserving ecological processes for conserving biodiversity in fragmented tropical landscapes.Abstract in Portuguese is available in the online version of this article.
Understanding a species' occurrence requirements is essential for its conservation, and species distribution models (SDMs) are a powerful tool for this purpose. Here we estimated a SDM based on actual distribution information, in relation to climatic, hydrological, human population, and vegetation data sets, to understand the ecological requirements and geographic distribution of the Neotropical otter Lontra longicaudis, a species whose habitat requirements and conservation needs are mostly unknown. Using MaxEnt, we defined its potential distribution and most suitable areas to indicate priority areas for research and to analyze the efficiency of Protected Areas (PAs). Our findings suggest that the range of Neotropical otters could extend beyond their present estimated distribution, adding new areas in northeastern Brazil, Andean region, west Ecuador, Venezuela, Peru, Mexico, and Argentina, with higher suitability in rain forests (especially Atlantic and Amazon Forests). We also found that PAs are the most suitable areas for otter distribution. Although better than non-protected areas, PAs are close to the median of the suitability values, indicating that they still can be improved to conserve otters. Annual temperature and human population density explained most data variance in our model. We suggest the change of the actual status of Neotropical otter to Least Concern or Near Threatened categories. We recommend verifying the possible sympatry with other otters, and demonstrate that rudimentary and/or occasional recent data of occurrence can also be used in SDMs and contribute to species conservation.Keywords: distribution range, Neotropical otter, niche modeling, reserve design, suitability Resumo Compreender os requisitos para a ocorrência de uma espécie é fundamental para sua conservação, e os modelos de distribuição de espécies (SDM) são uma ferramenta poderosa para essa finalidade. Aqui nós estimamos um SDM a partir de informações reais de distribuição, em relação a conjuntos de dados climáticos, hidrológicos, de população humana e de vegetação para entender as exigências ecológicas e a distribuição geográfica da lontra Neotropical Lontra longicaudis, espécie cujos requisitos de habitat e necessidades para a sua conservação são praticamente desconhecidos. Usando MaxEnt, definimos sua distribuição potencial e as áreas mais adequadas para a espécie a fim de indicar áreas prioritárias para pesquisa e analisar a eficácia das áreas protegidas (APs). Nossos resultados indicam que a distribuição da lontra neotropical poderia se estender além de sua distribuição atual estimada, adicionando novas áreas no nordeste do Brasil, na região andina, no oeste do Equador, na Venezuela, no Peru, no México e na Argentina, com maior adequabilidade em florestas tropicais (especialmente Mata Atlântica e Floresta Amazônica). Descobrimos também que APs são as áreas mais adequadas para a distribuição de lontra. Porém, embora sejam mais adequadas do que áreas não protegidas, as APs estão perto da mediana dos valores de adequa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.