In this work we propose a multi-valued extension of logic programs under the stable models semantics where each true atom in a model is associated with a set of justifications. These justifications are expressed in terms of causal graphs formed by rule labels and edges that represent their application ordering. For positive programs, we show that the causal justifications obtained for a given atom have a direct correspondence to (relevant) syntactic proofs of that atom using the program rules involved in the graphs. The most interesting contribution is that this causal information is obtained in a purely semantic way, by algebraic operations (product, sum and application) on a lattice of causal values whose ordering relation expresses when a justification is stronger than another. Finally, for programs with negation, we define the concept of causal stable model by introducing an analogous transformation to Gelfond and Lifschitz's program reduct. As a result, default negation behaves as "absence of proof" and no justification is derived from negative literals, something that turns out convenient for elaboration tolerance, as we explain with a running example.
Epistemic logic programs constitute an extension of the stable models semantics to deal with new constructs called subjective literals. Informally speaking, a subjective literal allows checking whether some regular literal is true in all stable models or in some stable model. As it can be imagined, the associated semantics has proved to be non-trivial, as the truth of the subjective literal may interfere with the set of stable models it is supposed to query. As a consequence, no clear agreement has been reached and different semantic proposals have been made in the literature. Unfortunately, comparison among these proposals has been limited to a study of their effect on individual examples, rather than identifying general properties to be checked. In this paper, we propose an extension of the well-known splitting property for logic programs to the epistemic case. To this aim, we formally define when an arbitrary semantics satisfies the epistemic splitting property and examine some of the consequences that can be derived from that, including its relation to conformant planning and to epistemic constraints. Interestingly, we prove (through counterexamples) that most of the existing proposals fail to fulfill the epistemic splitting property, except the original semantics proposed by Gelfond in 1991.
Defined by Gelfond in 1991 (G91), epistemic specifications (or programs) are an extension of logic programming under stable models semantics that introduces subjective literals. A subjective literal allows checking whether some regular literal is true in all (or in some of) the stable models of the program, being those models collected in a set called world view. One epistemic program may yield several world views but, under the original G91 semantics, some of them resulted from selfsupported derivations. During the last eight years, several alternative approaches have been proposed to get rid of these self-supported world views. Unfortunately, their success could only be measured by studying their behaviour on a set of common examples in the literature, since no formal property of "self-supportedness" had been defined. To fill this gap, we extend in this paper the idea of unfounded set from standard logic programming to the epistemic case. We define when a world view is founded with respect to some program and propose the foundedness property for any semantics whose world views are always founded. Using counterexamples, we explain that the previous approaches violate foundedness, and proceed to propose a new semantics based on a combination of Moore's Autoepistemic Logic and Pearce's Equilibrium Logic. The main result proves that this new semantics precisely captures the set of founded G91 world views.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.