This report presents a synchrotron radiation X-ray scattering characterization of calf brain tubulin purified by the modified Weisenberg procedure. The results show that under nonassembly conditions (i.e., in 10 mM sodium phosphate and 0.1 mM GTP, pH 7, buffer) these preparations consist of a uniform population of molecules with a radius of gyration of 3.1 +/- 0.1 nm, which can be interpreted as arising from the native alpha-beta heterodimer. The uniformity in the population persists even at unusually high concentrations of protein. Binding of colchicine or substitution of GTP by GDP does not induce, within the statistical accuracy and resolution range of our measurements, any significant structural modification in soluble tubulin. In assembly buffer [i.e., 10 mM sodium phosphate, 6 mM magnesium chloride, 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 1 mM GTP, and 3.4 M glycerol, pH 6.5], these preparations readily assemble into microtubules upon increasing the temperature from 4 to 37 degrees C. Binding of nondenaturing amphiphiles to soluble tubulin provides a simplified model for tubulin-membrane interactions. The X-ray scattering data show that the radius of gyration of tubulin progressively increases upon binding of the mild detergent sodium deoxycholate, reaching a maximum value of 4.3 +/- 0.1 nm at detergent saturation. The relative increase in the radius of gyration coincides within experimental error with the previously determined relative increase in the frictional coefficient [Andreu, J.M., & Muñoz, J.A. (1986) Biochemistry 25, 5220-5230]. Analysis of these observations suggests that the effect of detergent binding is to induce an isotropic swelling of the protein structure.
Two series of experiments were carried out to characterize (a) peptide fragments of sarcoplasmic reticulum (SR) ATPase, based on proteolysis with different enzymes and distribution of known labels, and (b) specific labeling and functional inactivation patterns, following ATPase derivatization with dicyclohexylcarbodiimide (DCCD) under various conditions. Digestion with trypsin or chymotrypsin results in the initial cleavage of the SR ATPase in two fragments of similar size and then into smaller fragments, while subtilisin and thermolysin immediately yield smaller fragments. Peptide fragments were assigned to segments of the protein primary structure and to functionally relevant domains, such as those containing the 32P at the active site and the fluorescein isothiocyanate at the nucleotide site. ATPase derivatization with [14C]DCCD under mild conditions produced selective inhibition of ATPase hydrolytic catalysis (EP + H2O in equilibrium E + Pi) without significant incorporation of the 14C radioactive label. This effect is attributed to blockage of catalytically active residues by reaction of the initial DCCD adduct with endogenous or exogenous nucleophiles. ATPase derivatization with [14C]DCCD under more drastic conditions produced inhibition of calcium binding, 14C radioactive labeling of tryptic fragments A1 and A2 (but not of B), and extensive cross-linking. Intermolecular and, to some extent, intramolecular cross-linking were prevented by exogenous nucleophiles. The presence of calcium during derivatization prevented functional inactivation, radioactive labeling of fragment A2, and internal cross-linking of fragment A1. It is proposed that both A1 and A2 fragments participate in formation of the calcium binding domain and that the labeled residues of fragment A2 are directly involved in calcium complexation.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.