Global climate change has increased the number and severity of stressors affecting species, yet not all species respond equally to these stressors. Organisms may employ cellular mechanisms such as apoptosis and autophagy in responding to stressful events. These two pathways are often mutually exclusive, dictating whether a cell adapts or dies. In order to examine differences in cellular response to stress, we compared the immune response of four coral species with a range of disease susceptibility. Using RNA-seq and novel pathway analysis, we were able to identify differences in response to immune stimulation between these species. Disease-susceptible species activated pathways associated with apoptosis. By contrast, disease-tolerant species and activated autophagic pathways. Moderately susceptible species activated a mixture of these pathways. These findings were corroborated by apoptotic caspase protein assays, which indicated increased caspase activity following immune stimulation in susceptible species. Our results indicate that in response to immune stress, disease-tolerant species activate cellular adaptive mechanisms such as autophagy, while susceptible species turn on cell death pathways. Differences in these cellular maintenance pathways may therefore influence the organismal stress response. Further study of these pathways will increase understanding of differential stress response and species survival in the face of changing environments.
As coral reefs continue to decline worldwide, it becomes ever more necessary to understand the connectivity between coral populations to develop efficient management strategies facilitating survival and adaptation of coral reefs in the future. Orbicella faveolata is one of the most important reef‐building corals in the Caribbean and has recently experienced severe population reductions. Here, we utilize a panel of nine microsatellite loci to evaluate the genetic structure of O. faveolata and to infer connectivity across ten sites spanning the wider Caribbean region. Populations are generally well‐mixed throughout the basin (FST = 0.038), although notable patterns of substructure arise at local and regional scales. Eastern and western populations appear segregated with a genetic break around the Mona Passage in the north, as has been shown previously in other species; however, we find evidence for significant connectivity between Curaçao and Mexico, suggesting that the southern margin of this barrier is permeable to dispersal. Our results also identify a strong genetic break within the Mesoamerican Barrier Reef System associated with complex oceanographic patterns that promote larval retention in southern Belize. Additionally, the diverse genetic signature at Flower Garden Banks suggests its possible function as a downstream genetic sink. The findings reported here are relevant to the ongoing conservation efforts for this important and threatened species, and contribute to the growing understanding of large‐scale coral reef connectivity throughout the wider Caribbean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.