This research focuses on developing a novel ultra high molecular weight polyethylene (UHMWPE) material reinforced with titanium dioxide (TiO 2 ) nanoparticles for producing craniofacial prostheses via an incremental sheet forming process (SPIF). First, UHMWPE-TiO 2 nanocomposite sheets were produced using incipient wetting and the compression molding process by considering different concentrations of TiO 2 nanoparticles. Then, the influence that the compression molding fabrication process has on the crystallinity and structural properties of the produced sample sheets was investigated. Experimental characterizations via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), tensile mechanical testing, and live/dead cell viability assays provided data that show an enhancement of the physical, mechanical, and biological properties. Finally, modifications on the nanocomposite material properties due to the SPIF manufacturing processes of a craniofacial prosthesis are addressed.
This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.