There has been a significant increase in studies related to Industry 4.0 alongside the development of new technologies, devices and software, becoming one of the most relevant topics for years within the so-called Fourth Industrial Revolution (4IR). The Architecture, Engineering and Construction sector (AEC) sector is one step behind other engineering fields in productivity, and digitalisation can help reduce this gap. Building Information Modelling (BIM) implementation in various project phases with other technologies such as the Internet of Things, Big Data, Blockchain or Geographic Information System (GIS) are the main drivers of Smart Construction. This paper provides an updated state-of-art of the BIM applications through different civil engineering projects and towards the use of new Information and Communication Technologies (ICTs). Hence, the integration of BIM in the Facility Management through ICTs allows decision making based on data analysis and the optimization of available resources.
Outstanding properties and advanced functionalities of thermal–regulatory by origami-based architecture materials have been shown at various scales. However, in order to model and manage its programmable mechanical properties by Building Information Modelling (BIM) for use in a covering structure is not a simple task. The aim of this study was to model an element that forms a dynamic shell that prevents or allows the perpendicular incidence of the sun into the infrastructure. Parametric modelling of such complex structures was performed by Grasshopper and Rhinoceros 3D and were rendered by using the V-ray’s plugin. The elements followed the principles of origami to readjust its geometry considering the sun position, changing the shadow in real time depending on the momentary interest. The results of the project show that quadrangular was the most suitable Origami shape for façade elements. In addition, a BIM-based automated system capable of modifying façade elements considering the sun position was performed. The significance of this research relies on the first implementation and design of an Origami constructive element using BIM methodology, showing its viability and opening outstanding future research lines in terms of sustainability and energy efficiency.
The concentration of pollutant gases emitted by traffic in a tunnel affects the indoor air quality and contributes to structural deterioration. Demand control ventilation systems incur high operating costs, so reliable measurement of the gas concentration is essential. Numerous commercial sensor types are available with proven experience, such as optical and first-generation electrochemical sensors, or novel materials in detection methods. However, all of them are subjected to measurement deviations due to environmental conditions. This paper presents the main types of sensors and their application in tunnels. Solutions will also be discussed in order to obtain reliable measurements and improve the efficiency of the extraction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.