The CCL2 chemokine mediates monocyte egress from bone marrow and recruitment into inflamed tissues through interaction with the CCR2 chemokine receptor, and its expression is upregulated by proinflammatory cytokines. Analysis of the gene expression profile in GM-CSF– and M-CSF–polarized macrophages revealed that a high CCL2 expression characterizes macrophages generated under the influence of M-CSF, whereas CCR2 is expressed only by GM-CSF–polarized macrophages. Analysis of the factors responsible for this differential expression identified activin A as a critical factor controlling the expression of the CCL2/CCR2 pair in macrophages, as activin A increased CCR2 expression but inhibited the acquisition of CCL2 expression by M-CSF–polarized macrophages. CCL2 and CCR2 were found to determine the extent of macrophage polarization because CCL2 enhances the LPS-induced production of IL-10, whereas CCL2 blockade leads to enhanced expression of M1 polarization-associated genes and cytokines, and diminished expression of M2-associated markers in human macrophages. Along the same line, Ccr2-deficient bone marrow–derived murine macrophages displayed an M1-skewed polarization profile at the transcriptomic level and exhibited a significantly higher expression of proinflammatory cytokines (TNF-α, IL-6) in response to LPS. Therefore, the CCL2-CCR2 axis regulates macrophage polarization by influencing the expression of functionally relevant and polarization-associated genes and downmodulating proinflammatory cytokine production.
Research into the paraoxonase (PON) gene family has flourished over the past few years. In the 1970s and 1980s, only PON1 was known, and the investigations were conducted, essentially, by toxicologists focusing on protection against organophosphate poisoning. Since then, two new members of the family, PON2 and PON3, have been identified, both being shown to play antioxidant and anti-inflammatory roles. Evidence exists indicating that the PON family is central to a wide variety of human illnesses such as cardiovascular disease, diabetes mellitus, metabolic syndrome, obesity, non-alcoholic steatohepatitis, and several mental disorders. However, research is hampered considerably by the methods currently available to measure the activity of these enzymes. In this review, we summarize the state of knowledge on PON biochemistry and function, the influence of genetic variations, and the involvement of PON in several diseases. The problems associated with PON measurement, such as sample acquisition, lack of reference methods, and variety of substrates, will be presented. Also, we cover some of the present lines of research and propose some others for future progress in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.