Abstract. The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.
Abstract. The influence of the quasi-biennial oscillation (QBO) on tropical climate is demonstrated using 500-year pre-industrial control simulations from the Met Office Hadley Centre model. Robust precipitation responses to the phase of the QBO are diagnosed in the model, which show zonally asymmetric patterns that resemble the El Niño–Southern Oscillation (ENSO) impacts. These patterns are found because the frequency of ENSO events for each QBO phase is significantly different in these simulations, with more El Niño events found under the westerly phase of the QBO (QBOW) and more La Niña events for the easterly phase (QBOE). The QBO–ENSO relationship is non-stationary and subject to decadal variability in both models and observations. In addition, regression analysis shows that there is a QBO signal in precipitation that is independent of ENSO. No evidence is found to suggest that these QBO–ENSO relationships are caused by ENSO modulating the QBO in the simulations. A relationship between the QBO and a dipole of precipitation in the Indian Ocean is also found in models and observations in boreal fall, characterised by a wetter western Indian Ocean and drier conditions in the eastern part for QBOW and the opposite under QBOE conditions. The Walker circulation is significantly weaker during QBOW compared to QBOE, which could explain the observed and simulated zonally asymmetric precipitation responses at equatorial latitudes, as well as the more frequent El Niño events during QBOW. Further work, including targeted model experiments, is required to better understand the mechanisms causing these relationships between the QBO and tropical convection.
A new method to determine monsoon onset and retreat timings using wavelet transform methodology applied to precipitation time-series at the pentad scale is described. The principal advantage of this method is its portability, since it can be easily adapted for any region and dataset. The application of the method is illustrated for the North American Monsoon and the Indian Monsoon using four different precipitation datasets and climate model output. The method is shown to be robust across all the datasets and both monsoon regions. The mean onset and retreat dates agree well with previous methods. Spatial distributions of the precipitation and circulation anomalies identified around the onset and retreat dates are also consistent with previous work and illustrate that this method may be used at the grid-box scale, not just over large area-averaged regions. The method is also used to characterize the strength and timing of the Midsummer drought (MSD) in southern Mexico and Central America. A two peak structure is found to be a robust structure in only in 33% of the years, with other years showing only one peak or no signs of a bimodal distribution. The two-peak structure analysed at the grid-box scale is shown to be a significant signal in several regions of Central America and southern Mexico. The methodology is also applied to climate model output from the Met Office Hadley Centre UKESM1 and HadGEM3 CMIP6 experiments. The modelled onset and retreat dates agree well with observations in the North American Monsoon but not in the Indian Monsoon. The start and end of the modelled MSD in southern Mexico and Central America is delayed by one pentad and has a stronger bimodal signal than observed.
Observations show that the seasonal cycle of precipitation in parts of southern Mexico and Central America exhibits a bimodal signal, known as the Midsummer drought (MSD), but there is no consensus on which processes are most relevant for the two-peak structure of the rainy season. This paper evaluates three hypotheses that could explain the MSD: the SST cloud-radiative feedback, the solar declination angle and the Caribbean Low-Level Jet (CLLJ) moisture transport hypotheses. Model experiments produced by the Met Office Hadley Centre (MOHC) for CMIP6 as well as ERA5 reanalysis data are used to critically assess the predictions of each hypothesis. The simulations capture the double peak signal of precipitation well and reasonably simulate the spatial and temporal variations of the MSD and other relevant climate features such as the CLLJ. Evidence from our analysis suggests that the Eastern Pacific SSTs do not increase in late summer in ERA5 data and only slightly increase in the simulations. More importantly, the Eastern Pacific SST variability in ERA5 and in the model experiments cannot explain the differences in the seasonality of precipitation. The net shortwave radiation at the surface shows a two-peak seasonal cycle; however, this behaviour appears to result from a strong anti-correlation of the incoming shortwave and convective activity due to cloud radiative-effects. There was no evidence found by this study of a causal link in which absorption of shortwave energy forces precipitation variations, as suggested by the solar declination angle hypothesis. The moisture convergence, CLLJ and the precipitable water vapor variations best explain the characteristics of the observed and simulated MSD, particularly for the onset of the MSD. The diagnosed variations of moisture convergence, which are synchronous with the timing of the MSD, point to a dynamic mechanism in which the low-level inflow from the Caribbean is more important for the MSD than other radiative mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.