As a part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on fracture formation in vitrified thin films of cryoprotectant agents. The current study combines experimental observations with continuum mechanics analysis. Experimental results have been developed using a new imaging device, termed a "cryomacroscope", which has been recently presented by the current research team. A newly developed liquid nitrogen-based cooling stage is presented in this paper. The samples under investigation are 0.5 ml droplets of cryoprotective agents, having a characteristic diameter of 20 mm and a characteristic thickness of 1.5 mm. Tested samples included dimethyl sulfoxide (DMSO) in a concentration range from 6M to 8.4M, and the cryoprotectant cocktails VS55 and DP6. Some samples contained small bovine muscle segments, having a characteristic dimension of 1 mm, in order to study stress concentration effects. Experimental results show that the onset of fracturing in vitrified films of cryoprotectants is very consistent, occurring over a small temperature range. Fracture pattern, however, was affected by the cooling rate. The presence of tissue segments did not affect the onset temperature of fracture, but affected the fracture pattern. The continuum mechanics analysis solidified the hypothesis that fracture is driven by thermal stress, not by temperature per se, and allowed fracture strain to be inferred from observed fracture temperature. In conjunction with the current report, additional photos of fracture formation in thin films are available at
This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.