The economic viability and energy use of vertical farms strongly depend on the efficiency of the use of light. Increasing far-red radiation (FR, 700–800 nm) relative to photosynthetically active radiation (PAR, 400–700 nm) may induce shade avoidance responses including stem elongation and leaf expansion, which would benefit light interception, and FR might even be photosynthetically active when used in combination with PAR. The aims of this study are to investigate the interaction between FR and planting density and to quantify the underlying components of the FR effects on growth. Lettuce (Lactuca sativa cv. Expertise RZ) was grown in a climate chamber under two FR treatments (0 or 52 μmol m–2 s–1) and three planting densities (23, 37, and 51 plants m–2). PAR of 89% red and 11% blue was kept at 218 μmol m–2 s–1. Adding FR increased plant dry weight after 4 weeks by 46–77% (largest effect at lowest planting density) and leaf area by 58–75% (largest effect at middle planting density). Radiation use efficiency (RUE: plant dry weight per unit of incident radiation, 400–800 nm) increased by 17–42% and incident light use efficiency (LUEinc: plant dry weight per unit of incident PAR, 400–700 nm) increased by 46–77% by adding FR; the largest FR effects were observed at the lowest planting density. Intercepted light use efficiency (LUEint: plant dry weight per unit of intercepted PAR) increased by adding FR (8–23%). Neither specific leaf area nor net leaf photosynthetic rate was influenced by FR. We conclude that supplemental FR increased plant biomass production mainly by faster leaf area expansion, which increased light interception. The effects of FR on plant dry weight are stronger at low than at high planting density. Additionally, an increased LUEint may contribute to the increased biomass production.
Vigorous interspecific rootstocks increase nitrogen (N) uptake in tomato plants but limited information is available on xylem transport rate. Non-grafted and self-grafted tomato plants cv. Attiya and plants grafted onto an interspecific hybrid, Kaiser, were grown under growth chamber conditions and subjected to two light levels, 400 or 800 µmol PAR m−2 s−1. Plant water uptake, xylem sap NO3− content, and stem hydraulic conductance (ks) were measured after two weeks of growth. Xylem vessel number and diameter were evaluated in cross-sectional stem cuts and the theoretical xylem hydraulic conductance (kh) was calculated. Only the light level modified the xylem NO3− content. Grafting reduced ks by 84% in comparison to non-grafted plants. The water uptake rate and xylem sap NO3− content were 4.02 ± 0.66 g H2O kg−1 DW h−1 and 12.78 ± 1.16 mM, respectively, across all grafting treatments. The rootstock has a higher kh because the vessel diameter is 79.3 ± 14.4 µm while in non-grafted plants it is 62.0 ± 10.1 µm. Nitrate concentration and transport rate changes accordingly to the plant’s growth rate. The vigorous rootstock relies on larger vessels to supply the required amounts of N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.