Parkinson’s disease is characterized by abnormal gait, which worsens as the condition progresses. Although several methods have been able to classify this feature through pose-estimation algorithms and machine-learning classifiers, few studies have been able to analyze its progression to perform stage classification of the disease. Moreover, despite the increasing popularity of these systems for gait analysis, the amount of available gait-related data can often be limited, thereby, hindering the progress of the implementation of this technology in the medical field. As such, creating a quantitative prognosis method that can identify the severity levels of a Parkinsonian gait with little data could help facilitate the study of the Parkinsonian gait for rehabilitation. In this contribution, we propose a vision-based system to analyze the Parkinsonian gait at various stages using linear interpolation of Parkinsonian gait models. We present a comparison between the performance of a k-nearest neighbors algorithm (KNN), support-vector machine (SVM) and gradient boosting (GB) algorithms in classifying well-established gait features. Our results show that the proposed system achieved 96–99% accuracy in evaluating the prognosis of Parkinsonian gaits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.