As Global Navigation Satellite System (GNSS) signals travel through the troposphere, a tropospheric delay occurs due to a change in the refractive index of the medium. The Precise Point Positioning (PPP) technique can achieve centimeter/millimeter positioning accuracy with only one GNSS receiver. The Zenith Tropospheric Delay (ZTD) is estimated alongside with the position unknowns in PPP. Estimated ZTD can be very useful for meteorological applications, an example is the estimation of water vapor content in the atmosphere from the estimated ZTD. PPP is implemented with different algorithms and models in online services and software packages. In this study, a performance assessment with analysis of ZTD estimates from three PPP online services and three software packages is presented. The main contribution of this paper is to show the accuracy of ZTD estimation achievable in PPP. The analysis also provides the GNSS users and researchers the insight of the processing algorithm dependence and impact on PPP ZTD estimation. Observation data of eight whole days from a total of nine International GNSS Service (IGS) tracking stations spread in the northern hemisphere, the equatorial region and the southern hemisphere is used in this analysis. The PPP ZTD estimates are compared with the ZTD obtained from the IGS tropospheric product of the same days. The estimates of two of the three online PPP services show good agreement (<1 cm) with the IGS ZTD values at the northern and southern hemisphere stations. The results also show that the online PPP services perform better than the selected PPP software packages at all stations.
We propose differential optical feedback interferometry, a technique able to measure nanometer-size amplitude displacements by comparing the optical power of two lasers subject to optical feedback. In this letter, the principles of the technique are explained in detail, and its limits are explored by simulation. Theoretical results are presented showing that the technique can measure nanometer scale displacements with resolution within the angstrom scale. An experimental setup for validation has been built, and a series of experimental tests were performed using a capacitive sensor as a reference. Results show good agreement between theory and experiment with a reasonable reduction in performance due to mechanical coupling and signal noise. The proposed technique, thus, provides measurements of a very high resolution using an extremely simple and robust experimental setup.Index Terms-Laser sensors, nanodisplacement sensing, optical feedback interferometry, optical metrology.
Optical feedback interferometry is a well known technique that can be used to build non-contact, cost effective, high resolution sensors. In the case of displacement measurement, different research groups have shown interest in increasing the resolution of the sensors based on this type of interferometry. Such efforts have shown that it is possible to reach better resolutions by introducing external elements such as electro-optic modulators, or by using complex signal processing algorithms. Even though the resolution of the technique has been increased, it is still not possible to characterize displacements with total amplitudes under λ/2. In this work, we propose a technique capable of measuring true nanometre amplitude displacements based on optical feedback interferometry. The system is composed by two laser diodes which are calibrated within the moderate feedback regime. Both lasers are subjected to a vibration reference and only one of them is aimed to the measurement target. The optical output power signals obtained from the lasers are spatially compared and the displacement information is retrieved. The theory and simulations described further on show that sub-nanometre resolution may be reached for displacements with amplitudes lower than λ/2. Expected limitations due to the measurement environment will also be discussed in this paper.
In this paper, we present a new method to calculate the height of the second lapse-rate tropopause (LRT2) using GNSS high-precision data. The use of GNSS data for monitoring the atmosphere is possible because as the radio signals propagate through the troposphere, they are delayed according to the refractive index of the path of the signal. We show that by integrating the vertical profile of the refractive index in the troposphere, we are able to determine the altitude of LTR2. Furthermore, as GNSS data is available from many stations around all latitudes of the globe and make up a network with high spatial and temporal resolution, we can monitor the diurnal cycle of the variables related to the refractive index of the path of the signal. A comparison between the heights of the LRT2 obtained with radiosonde data and with this novel method is presented in the paper, and it shows good agreement. The average difference found is ≤1 km for stations between the latitudes of 30°S and 30°N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.