Chronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing’s syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits. AdKO mice had reduced relative volumes in several brain regions, including the corpus callosum and cortical areas. The medial amygdala, bed nucleus of the stria terminalis, and hypothalamus were increased in relative volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP, an oligodendrocyte marker) in several brain regions but a paradoxically increased MBP signal in the male cingulate cortex. We also observed a decrease in the expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia) in the cingulate regions of the anterior corpus callosum and the hippocampus. We conclude that long-term hypercorticosteronemia induced brain region-specific changes that might include aberrant myelination and a degree of white matter damage, as both repair (GFAP) and immune (IBA1) responses are decreased. These findings suggest a cause for the changes observed in the brains of human patients and serve as a background for further exploration of their subcellular and molecular mechanisms.
Circadian desynchrony occurs when individuals are exposed to abrupt phase shifts of the light-dark cycle, as in jet lag. For reducing symptoms and for speeding up resynchronization, several strategies have been suggested, including scheduled exercise, exposure to bright light, drugs, and especially exogenous melatonin administration. Restricted feeding schedules have shown to be powerful entraining signals for metabolic and hormonal daily cycles, as well as for clock genes in tissues and organs of the periphery. This study explored in a rat model of jet lag the contribution of exogenous melatonin or scheduled feeding on the re-entrainment speed of spontaneous general activity and core temperature after a 6-h phase advance of the light-dark cycle. In a first phase, the treatment was scheduled for 5 days prior to the phase shift, while in a second stage, the treatment was simultaneous with the phase advance of the light-dark cycle. Melatonin administration and especially scheduled feeding simultaneous with the phase shift improved significantly the re-entrainment speed. The evaluation of the free-running activity and temperature following the 5-day treatment proved that both exogenous melatonin and specially scheduled feeding accelerated re-entrainment of the SCN-driven general activity and core temperature, respectively, with 7, 5 days (p < 0.01) and 3, 3 days (p < 0.001). The present results show the relevance of feeding schedules as entraining signals for the circadian system and highlight the importance of using them as a strategy for preventing internal desynchrony.
The metabolic and cardiovascular clinical manifestations in patients with Cushing's syndrome (CS) are generally well known. However, recent studies have broadened the perspective of the effects of hypercortisolism, showing that both endogenous and exogenous glucocorticoid excess alter brain functioning on several time scales. Consequently, cognitive deficits and neuropsychological symptoms are highly prevalent during both active CS and CS in remission, as well as during glucocorticoid treatment. In this review, we discuss the effects of endogenous hypercortisolism and exogenously induced glucocorticoid excess on the brain, as well as the prevalence of cognitive and neuropsychological deficits and their course after biochemical remission. Furthermore, we propose possible mechanisms that may underly neuronal changes, based on experimental models and in vitro studies. Finally, we offer recommendations for future studies.
ObjectiveTo test the hypothesis that systemic and inhaled glucocorticoid use is associated with changes in grey matter volume (GMV) and white matter microstructure.DesignCross-sectional study.SettingUK Biobank, a prospective population-based cohort study of adults recruited in the UK between 2006 and 2010.ParticipantsAfter exclusion based on neurological, psychiatric or endocrinological history, and use of psychotropic medication, 222 systemic glucocorticoid users, 557 inhaled glucocorticoid users and 24 106 controls with available T1 and diffusion MRI data were included.Main outcome measuresPrimary outcomes were differences in 22 volumetric and 14 diffusion imaging parameters between glucocorticoid users and controls, determined using linear regression analyses adjusted for potential confounders. Secondary outcomes included cognitive functioning (six tests) and emotional symptoms (four questions).ResultsBoth systemic and inhaled glucocorticoid use were associated with reduced white matter integrity (lower fractional anisotropy (FA) and higher mean diffusivity (MD)) compared with controls, with larger effect sizes in systemic users (FA: adjusted mean difference (AMD)=−3.7e-3, 95% CI=−6.4e-3 to 1.0e-3; MD: AMD=7.2e-6, 95% CI=3.2e-6 to 1.1e-5) than inhaled users (FA: AMD=−2.3e-3, 95% CI=−4.0e-3 to −5.7e-4; MD: AMD=2.7e-6, 95% CI=1.7e-7 to 5.2e-6). Systemic use was also associated with larger caudate GMV (AMD=178.7 mm3, 95% CI=82.2 to 275.0), while inhaled users had smaller amygdala GMV (AMD=−23.9 mm3, 95% CI=−41.5 to −6.2) than controls. As for secondary outcomes, systemic users performed worse on the symbol digit substitution task (AMD=−0.17 SD, 95% CI=−0.34 to −0.01), and reported more depressive symptoms (OR=1.76, 95% CI=1.25 to 2.43), disinterest (OR=1.84, 95% CI=1.29 to 2.56), tenseness/restlessness (OR=1.78, 95% CI=1.29 to 2.41), and tiredness/lethargy (OR=1.90, 95% CI=1.45 to 2.50) compared with controls. Inhaled users only reported more tiredness/lethargy (OR=1.35, 95% CI=1.14 to 1.60).ConclusionsBoth systemic and inhaled glucocorticoid use are associated with decreased white matter integrity and limited changes in GMV. This association may contribute to the neuropsychiatric side effects of glucocorticoid medication, especially with chronic use.
Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO 2.0 mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO 2.0 mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO 2.0 mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.