This work compares the performance of vertical subsurface flow treatment wetlands (VSSF TWs) for wastewater treatment, planted with Zantedeschia aethiopica (Za), here operated simultaneously under two different climate conditions, arid and Mediterranean. The experimental setup was divided into two treatment lines for each climate condition: three VSSF TWs planted with Schoenplectus californicus (Sc) (VSSF-S), as the control, and three VSSF TWs planted with Zantedeschia aethiopica (Za) (VSSF-Z), as the experimental unit. The four treatment systems were operated at a hydraulic loading rate of 120 mm/d during spring and summer seasons, in two locations, Iquique (Atacama Desert, Chile) and Talca (Central Valley, Chile). The water quality in effluents, plant development, and water balance were used as performance measures. In terms of the water quality, the influents’ characteristics were similar in both climates and classified as “diluted”. For the effluents, in both climate conditions, average COD and TSS effluent concentrations were below 50 mg/L and 15 mg/L, respectively. In both climate conditions, average TN and TP effluent concentrations were below 40 mg/L and 2 mg/L, respectively. Furthermore, only total nitrogen (TN) and total phosphorus (TP) in effluents to VSSF-Z had a significant effect (p < 0.05) in relation to the climate condition. Regarding plant development, Za showed a lower height growth in both climate conditions, with arid consistently 0.3 m and Mediterranean decreasing from 0.6 m to 0.2 m. However, the physiological conditions of the leaves (measured by chlorophyll content) were not affected during operation time in both climates. Water balance showed that it was not influenced by the climate conditions or plant, with water loss differences below 5%. Therefore, taking into account the water quality and water balance results, Zantedeschia aethiopica can be used in VSSF TWs in a way similar to traditional plants under arid and Mediterranean climates. However, its use has to be carefully considered because lower height could affect the esthetics for its implementation in the VSSF TWs.
The aim of this work is to evaluate the reuse of municipal wastewaters treated through subsurface constructed wetlands (SS-CWs) as irrigation water in cut flower aeroponic cultivation under arid conditions. For this purpose, two experimental aeroponic cultivation systems were installed with the cut flower Lilium ‘Tresor’ planted and irrigated with SS-CWs treated water. The results showed that the quality of the SS-CWs wastewater has to be improved to be used in irrigation. Despite that, Lilium ‘Tresor’ grew under arid conditions with normal stem diameters and number of flowers but with heights under 0.65 m, which would restrict their commercialization to local markets. Water electrical conductivity (> 2300 µs/cm) and luminosity (> 120 klux) were factors that affected plant height. When compared to other cultivation systems, the aeroponic cultivation system used between 10 % and 20 % of the amount of water needed to produce Lilium ‘Tresor.’ Thus, this work showed the feasibility to produce cut flowers using an aeroponic cultivation system under arid conditions and irrigated with SS-CWs effluents. Likewise, it was detected that improvements to water quality and luminosity must be made for industrial scaling.
Reclamation of treated wastewater is considered a viable option for reducing the agricultural and national water deficit, especially in Mediterranean-type and arid climatic conditions. Given that Chile is a country around 40% of whose territory is classified as semi-arid and desert and 20% as Mediterranean, with serious water scarcity problems, and which uses a great deal of the resource in agricultural irrigation, the present paper offers perspectives on the current state of treated wastewater reuse and considers challenges to improving the development of water reclamation for irrigation in Chile as a case study. The methods followed included a systematic literature review to answer two important questions: (a) What is the state of reclamation of treated wastewater for irrigation in Chile? and (b) What criteria/parameters determine the feasibility of reclaiming treated wastewater for irrigation in Chile? The results showed that Chile has been affected by climate change in a short time: a megadrought has occurred over the last ten years, increasing the necessity for the country to secure alternative water sources for irrigation. The country has advanced greatly in wastewater treatment coverage, achieving almost 100% in urban areas, with technologies that can produce quality water as a new water source for irrigation. However, the lack of regulations and limited frameworks could explain the low direct reuse at present—below 1% of total flow. Regarding challenges, the necessity of updates to Chile’s institutional and legal frameworks, besides the inclusion of rural communities and the study of emerging contaminants, will be discussed. By these means, it will be possible to more efficiently utilize recycled wastewater as a new source for irrigation in this country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.