Among mammals, bats exhibit extreme variation in sociality, with some species living largely solitary lives while others form colonies of more than a million individuals. Some tropical species form groups during the day that persist throughout the year while many temperate species only gather into groups during hibernation or parturition. How groups form and then persist has now been described for a number of species, but the degree to which kinship explains patterns of association has never been quantified across species. Here, we use social network analysis and genetic data to determine the extent to which relatedness contributes to associations among individuals estimated from free-ranging animals across nine species from four families of bats. Network analysis reveals that all species show evidence of emergent social structure. Variation in the strength of the relationship between genetic relatedness and social association appears to be related to the degree of roost switching, i.e., species in which individuals change roosts frequently tend to exhibit higher levels of association among relatives. Sex-biased dispersal determines whether associations were between male or female relatives. The strength of associations among kin does not predict known occurrence of complex behaviors, such as dominance or various types of cooperation, indicating that kinship is not a prerequisite for social complexity in bats. Significance statement The number of differentiated relationships has been proposed as a way to measure social complexity. Among primates, relationships can be differentiated on the basis of rank, age, kinship, or association. Application of this approach to other groups of mammals that vary in sociality could help reveal ecological, behavioral, or cognitive similarities and differences between species.
We analysed variation at 14 nuclear microsatellite loci to assess the genetic structure, relatedness, and paternity of polygynous Jamaican fruit-eating bats. A total of 84 adults captured in two caves exhibited little genetic differentiation between caves ( F ST = 0.008). Average relatedness among adult females in 10 harem groups was very low ( R = 0.014 ± ± ± ± 0.011), providing no evidence of harem structure. Dominant and subordinate males shared paternity in large groups, while dominant and satellite males shared paternity in smaller groups. However, our results suggest that male rank influences paternity. Dominant males fathered 69% of 40 offspring, followed by satellite (22%) and subordinate males (9%). Overall adult male bats are not closely related, however, in large harem groups we found that subordinate and dominant males exhibited relatedness values consistent with a father-offspring relationship. Because dominant and subordinate males also sired all the pups in large groups, we propose that their association provides inclusive fitness to them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.