The research community has made significant advances towards realizing self-tuning cloud caches; notwithstanding, existing products still require manual expert tuning to maximize performance. Cloud (software) caches are built to swiftly serve requests; thus, avoiding costly functionality additions not directly related to the request-serving control path is critical. We show that serverless computing cloud services can be leveraged to solve the complex optimization problems that arise during self-tuning loops and can be used to optimize cloud caches for free. To illustrate that our approach is feasible and useful, we implement SPREDS (Self-Partitioning REDiS), a modified version of Redis that optimizes memory management in the multi-instance Redis scenario. A cost analysis shows that the serverless computing approach can lead to significant cost savings: The cost of running the controller as a serverless microservice is 0.85% of the cost of the always-on alternative. Through this case study, we make a strong case for implementing the controller of autonomic systems using a serverless computing approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.