Artículo de publicación ISIIn this work, we present a review of the state of
the art of information-theoretic feature selection methods.
The concepts of feature relevance, redundance, and complementarity
(synergy) are clearly defined, as well as
Markov blanket. The problem of optimal feature selection
is defined. A unifying theoretical framework is described,
which can retrofit successful heuristic criteria, indicating
the approximations made by each method. A number of
open problems in the field are presented.CONICYT-CHILE
under grant FONDECYT 1110701
We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical alert broker designed to provide a rapid and self-consistent classification of large etendue telescope alert streams, such as that provided by the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean-led broker run by an interdisciplinary team of astronomers and engineers working to become intermediaries between survey and follow-up facilities. ALeRCE uses a pipeline that includes the real-time ingestion, aggregation, cross-matching, machine-learning (ML) classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp-based classifier, designed for rapid classification, and a light curve-based classifier, which uses the multiband flux evolution to achieve a more refined classification. We describe in detail our pipeline, data products, tools, and services, which are made public for the community (see https://alerce.science). Since we began operating our real-time ML classification of the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We describe our results to date, including the real-time processing of 1.5 × 10 8 alerts, the stamp classification of 3.4 × 10 7 objects, the light-curve classification of 1.1 × 10 6 objects, the report of 6162 supernova candidates, and different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead in going from a single stream of alerts such as ZTF to a multistream ecosystem dominated by LSST.
High-resolution galaxy spectra contain much information about galactic physics, but the high dimensionality of these spectra makes it difficult to fully utilize the information they contain. We apply variational autoencoders (VAEs), a nonlinear dimensionality reduction technique, to a sample of spectra from the Sloan Digital Sky Survey (SDSS). In contrast to principal component analysis (PCA), a widely used technique, VAEs can capture nonlinear relationships between latent parameters and the data. We find that a VAE can reconstruct the SDSS spectra well with only six latent parameters, outperforming PCA with the same number of components. Different galaxy classes are naturally separated in this latent space, without class labels having been given to the VAE. The VAE latent space is interpretable because the VAE can be used to make synthetic spectra at any point in latent space. For example, making synthetic spectra along tracks in latent space yields sequences of realistic spectra that interpolate between two different types of galaxies. Using the latent space to find outliers may yield interesting spectra: in our small sample, we immediately find unusual data artifacts and stars misclassified as galaxies. In this exploratory work, we show that VAEs create compact, interpretable latent spaces that capture nonlinear features of the data. While a VAE takes substantial time to train (≈1 day for 48,000 spectra), once trained, VAEs can enable the fast exploration of large astronomical data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.