Dorsoventral asymmetry of the Antirrhinum corolla depends on expression of the CYC and DICH genes in dorsal petals. One role of these genes is to inhibit DIVARICATA (DIV), a determinant of ventral identity. Therefore, in cyc;dich double mutants ventral identity spreads all around the flower. We show that DIV encodes a protein belonging to the MYB family of transcription factors. Early on in corolla development, DIV affects specifically the growth of ventral and lateral petals but is transcribed in all petals. Analysis of a closely related gene suggests that the lack of effect on dorsal petals is not due to redundancy. More likely, therefore, DIV is regulated posttranscriptionally through a mechanism that depends on CYC and DICH. Later on, DIV affects growth and cell types and is transcribed mostly in a single layer of cells of ventral and lateral petals. This late pattern may itself depend on DIV activity because it fails to be established in a transcribed but inactive div mutant and, conversely, spreads all around the flower in cyc;dich double mutants.
These two authors contributed equally to this work.
SUMMARYThe establishment of meristematic domains with different transcriptional activity is essential for many developmental processes. The asymmetry of the Antirrhinum majus flower is established by transcription factors with an asymmetric pattern of activity. To understand how this asymmetrical pattern is established, we studied the molecular mechanism through which the dorsal MYB protein RADIALIS (RAD) restricts the activity of the MYB transcription factor DIVARICATA (DIV) to the ventral region of the flower meristem. We show that RAD competes with DIV for binding with other MYB-like proteins, termed DRIF1 and DRIF2 (DIVand-RAD-interacting-factors). DRIF1 and DIV interact to form a protein complex that binds to the DIV-DNA consensus region, suggesting that the DRIFs act as co-regulators of DIV transcriptional activity. In the presence of RAD, the interaction between DRIF1 and DIV bound to DNA is disrupted. Moreover, the DRIFs are sequestered in the cytoplasm by RAD, thus, preventing or reducing the formation of DRIF-DIV heterodimers in the nuclei. Our results suggest that in the dorsal region of the Antirrhinum flower meristem the dorsal protein RAD antagonises the activity of the ventral identity protein DIV in a subcellular competition for a DRIF protein promoting the establishment of the asymmetric pattern of gene activity in the Antirrhinum flower.
In the three salivary gland regions of Bradysia hygida (Diptera, Sciaridae) the patterns of polypeptide synthesis, as revealed by electrophoresis and fluorography, are very stable during the fourth larval instar until about 30 h before the pupal molt. At this age the patterns of polypeptide synthesis start to undergo marked changes. The striking correlations between these changes and the development of two distinct groups of DNA puffs support the proposal that DNA puffs are causally related to the synthesis of specific proteins in the salivary glands.
Diverse spatial patterns of flower color in Antirrbinum can be produced by a series of alleles of pallida, a gene encoding an enzyme required for pigment biosynthesis. The alleles arose by imprecise excision of a transposable element, Tam3, and we show that they carry a series of deletions involving progressive removal of sequences adjacent to the excision site. This has enabled us to define three cis-acting upstream regions. A, B, and C, which differentially affect the level of pallida expression in distinct areas of the flower. We show further that an unlinked locus, delila, regulates the spatial distribution of pallida transcript. Deletion of regions ABC at the pallida locus uncouples pallida from regulation by delila, whereas deletion of A or AB brings pallida under regulation by delila in a new area of the flower. These results suggest that diverse patterns of pallida expression reflect the diflerent ways in which alleles interact with a prepattem of both common and spatially specific genetic signals in the flower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.