Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl--cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry.Dengue (DEN) virus, the most important arthropod-borne human pathogen, represents a serious public health threat. DEN virus is transmitted to humans by the bite of the domestic mosquito, Aedes aegypti, and circulates in nature as four distinct serological types (DEN-1 to -4). DEN virus has been recognized in over 100 countries, and 2.5 billion people live in areas where DEN virus is endemic (16). The clinical manifestations of DEN virus infection range in severity from a simple self-limited febrile illness known as dengue fever to a hemorrhagic fever (DHF) and potentially fatal hemorrhagic shock syndrome. Each year, more than 50 million cases of dengue fever and several hundred thousand cases of DHF occur. During the past 8 years the incidence of dengue has grown in areas of endemicity, particularly in the American region. A specific treatment or vaccine is not yet available.DEN virus is an enveloped virus that belongs to the Flaviviridae family. Mature virions are icosahedral, 50 nm in diameter, and contain a single-strand and positive-polarity RNA as genome of about 10.7 kb (21). The DEN virus genome encodes three structural proteins (envelope glycoprotein, E; membrane, M; and capsid, C) and seven nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5). E protein is the major structural protein exposed on the surface of the particle, and it arrays in homodimers, parallel to viral surface. Recently, the structure of DEN virus E protein has been determined by X-ray crystallography (24). Each monomer consists of three domains: the structurally central amino-terminal domain I that organizes the structure; the dimerization domain II that contains the hydrophobic fusion peptide essential for virus-cell fusion; and finally the carboxy-terminal immunoglobulin (Ig)-like domain III, which has been proposed to function as the binding site for cellular re...
SummaryIn order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen‐presenting cells. These self‐adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII‐PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII‐PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII‐PIGS also induced a significant cellular immune response, IFN‐γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof‐of‐principle study shows that the potent antibody Fc‐mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad‐ranging immune response.
The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector.Measles virus (MV) is an enveloped virus with a negativesense RNA genome (2). It is still a major cause of death in children of developing countries, mainly due to opportunistic secondary infections facilitated by MV-induced immune suppression (12, 29). Transient but severe immune suppression is explained at least in part by the rapid spread of MV infection in immune cells (6,37,41). MV targets immune cells through its hemagglutinin (H) that binds cellular receptors and triggers the other glycoprotein F to fuse cellular membranes (22).Two MV receptors have been identified. The first one was the membrane cofactor protein (MCP; CD46), a ubiquitously expressed regulator of complement activation sustaining infection by the MV vaccine strain (8, 21) but not by wild-type (WT) strains (24). Wild-type MV strains, as well as the vaccine strain, enter cells through the signaling lymphocytic activation molecule (SLAM; CD150) (10,15,35). SLAM is an immune cellspecific protein expressed on the surface of thymocytes, activated lymphocytes, mature dendritic cells, and activated macrophages (4, 31). The existence of another receptor on cells derived from human lung and bladder epithelium has been inferred (18,33). While this epithelial receptor (EpR) has not been identified yet, it appears to be a basolateral protein expressed by cells forming tight junctions (18).We are characterizing the mechanisms by which MV spreads in its host and the pathogenic consequences of the interactions with different receptors. We previously showed that an MV unable to recognize EpR remains virulent in rhesus monkeys but cannot cross the epithelium and is not shed (18). This result is consistent with the model ...
Measles remains a leading cause of death worldwide among children because it suppresses immune function. The measles virus (MV) P gene encodes three proteins (P, V, and C) that interfere with innate immunity, controlling STAT1, STAT2, mda5, and perhaps other key regulators of immune function. We identified here three residues in the shared domain of the P and V proteins-tyrosine 110, valine 112, and histidine 115-that function to retain STAT1 in the cytoplasm and inhibit interferon transcription. This information was used to generate a recombinant measles virus unable to antagonize STAT1 function (STAT1-blind MV) differing only in these three residues from a wild-type strain of well-defined virulence. This virus was used to assess the relevance of P and V interactions with STAT1 for virulence in primates. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with STAT1-blind MV, viremia was short-lived, and the skin rash and other clinical signs observed with wild-type MV were absent. The STAT1-blind virus less efficiently controlled the inflammatory response, as measured by enhanced transcription of interleukin-6 and tumor necrosis factor alpha in peripheral blood mononuclear cells from infected hosts. Importantly, neutralizing antibody titers and MV-specific T-cell responses were equivalent in hosts infected with either virus. These findings indicate that efficient MV interactions with STAT1 are required to sustain virulence in a natural host by controlling the inflammatory response against the virus. They also suggest that selectively STAT1-blind MV may have utility as vectors for targeted oncolysis and vaccination.Innate immunity, and in particular the interferon (IFN) system, protects the host from viral infections. However, viruses have evolved multiple complementary strategies to evade or control the type I (␣/) IFN responses. They can interfere with gene expression and/or protein synthesis, minimize IFN induction by specifically blocking IFN induction cascades, inhibit IFN signaling, block the action of IFN-induced antiviral proteins, or have a replication strategy not sensitive to IFN action (19,21,24).The IFN-␣/ signaling pathway is well characterized: secreted IFN binds to its receptor, activating the tyrosine kinases JAK1 and Tyk2, which in turn phosphorylate the signal transducers and activators of transcription STAT1 and STAT2. Phosphorylated STAT1 and STAT2 form a stable heterodimer that interacts with the DNA-binding protein IRF-9. The IRF-9/STAT1/STAT2 heterotrimer, named IFN-stimulated gene factor 3 (ISGF3), translocates to the nucleus, and binds the IFN-stimulated response element (ISRE) in target promoters, resulting in transcriptional activation of multiple genes that establishes an antiviral state in infected and surrounding noninfected cells (11,12).Innate immunity control strategies can be remarkably sophisticated even for RNA viruses that have small genomes and a limited coding capacity. For example, the P gene of measles virus (MV), the enveloped nonsegmented...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.