BackgroundIn recent epidemiological models, immunity is incorporated as a simplified value that determines the capacity of an individual to become infected or to transmit the disease. Moreover, the quality of the immune response determines the chances of infection and the length of time an individual is capable to infect others. We present a model that incorporates individuals’ immune responses to, further, examine the role of the collective immune response of individuals in a population during an infectious outbreak.MethodsWe constructed a contagion model that incorporates the collective immune response of individuals represented by the superposition of individual immune responses (PIR). Multiple probability distributions are used to represent the immunocompetence of different age groups, thereby modeling the concept of Population Immune Response (PIR). Multiple experiments were conducted in which the population is divided in different age groups for which each group has a unique immune response quality and thus a different length for its immune periods. Finally, we explored the effects of implementing different vaccination strategies in the population.ResultsThe experiments displayed important variations in the outbreak dynamics as a consequence of incorporating PIR in homogeneous and mixed populations. The experiments showed that individuals with weak immune responses and those who are immune to the pathogen play a significant role in shaping the outbreak dynamics. Finally, after implementing different vaccination strategies, the results suggest that if vaccination resources are limited, the vaccination should be targeted towards individuals that spread the disease for a longer period of time.ConclusionsOur results suggest that it is essential for the public health establishment to increase their understanding of the characteristics of regional demographics that could impact the quality of the immune response of the individuals. The results indicate that it is necessary to further investigate mitigation strategies to limit the capacity to transmit the disease by individuals that spread the pathogen for extended periods of time. Ultimately, this study suggests that it is crucial for public health researchers to identify appropriate targeted vaccination regimes and to explore the link between PIR and outbreak dynamics to improve the monitoring and mitigating efforts of ongoing and future epidemics.
Emerging diseases, novel strains of reemerging diseases, and bioterrorism threats necessitate the development of computational models that can supply health care providers with tools to facilitate analysis and simulation of the progression of infectious diseases in a population. Most computational models assume homogeneous mixing within populations. However, a more realistic approach to the simulation of infectious disease outbreaks includes the stratification of populations in which the interactions between individuals are affinity-based. To examine the effects of heterogeneous populations on the outbreak dynamics, we developed a hybrid model that includes clustered individuals which represent differentiated populations. This facilitates the study of the effects of distinct behavioral properties on the dynamics of an infectious disease epidemic. Our results indicate that non-uniform interactions and affinity-driven behavior can drastically change the outbreak dynamics in the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.