The reactivity of individual C--H bonds in the methyl(trifluoromethyl)dioxirane TFDO oxygenation of stereogenic methylene groups in conformationally homogeneous monosubstituted cyclohexanes (2) has been determined. The unexpectedly high occurrence of O-atom insertion into C--H(ax) bonds suggests an in plane trajectory attack in the oxygenation while the diastereoselectivity of the reaction is qualitatively interpreted on the basis of the distinct hyperconjugative stabilization by the substituent of diastereomeric transition states due to long-range through bond interactions.
Earlier studies established that dimethyldioxirane (1a) reacts with sulfides 2 in two consecutive concerted electrophilic oxygen-transfer steps to give first sulfoxides 3 and then sulfones 4. The same sequential electrophilic oxidation model was assumed for the reaction of sulfides 2 with the strongly electrophilic methyl(trifluoromethyl)dioxirane (1b). In this paper we report on a systematic and general study on the mechanism of the reaction of simple sulfides 2 with DMDO (1a) and TFDO (1b) which provides clear evidence for the involvement of hypervalent sulfur species in the oxidation process. In the oxidation of sulfides 2a-c, diphenyl sulfide (2d), para-substituted aryl methyl sulfides 2e-i, and phenothiazine 2k with 1b, the major product was the corresponding sulfone 4, even when a 10-fold excess of sulfide relative to 1b was used. The sulfone:sulfoxide 4:3 ratio depends among other factors on the dioxirane 1a or 1b used, the sulfide substitution pattern, the polar, protic, or aprotic character of the solvent, and the temperature. The influence of these factors and also deuterium and (18)O tracer experiments performed allow a general mechanism to be depicted for these oxidations in which the key step is the reversible cyclization of a zwitterionic intermediate, 6, to form a hypervalent sulfur species, 7. The classical sequential mechanism which establishes that sulfides are oxidized first to sulfides and then to sulfones can be enclosed in our general picture of the process and represents just those particular cases in which the zwitterionic intermediate 6 decomposes prior to undergoing ring closure to afford the hypervalent sulfurane intermediate 7.
[Chemical reaction: See text] The mechanism of the oxygenation of alkane C-H bonds with methyl(trifluoromethyl)dioxirane (1a) is studied through the effect of the substituent and solvent on the rate of oxygenation of 2-substituted adamantanes (2). The results suggest a remarkable electron deficiency at the reacting carbon atom in the transition state leading to the regular oxygenation products. The linearity of the Hammett plot reveals that the reaction mechanism does not change within a range of 0.15-0.67 units of sigma(I). A change in the solvent does not affect the distribution of the products, indicating a through-bond transmission of the substituent effect as the origin of the deactivation of the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.