In the present study we report a facile and reproducible method of preparing magnetic thermosensitive hybrid material based on P(NIPAM) microgels covered with gamma-Fe2O3 nanoparticles of 6-nm size. The iron oxide nanoparticles provided magnetic response to the microgels. In addition, the presence of the magnetic nanoparticles on the microgels altered their swelling behavior and shifted their volume phase transition temperature to higher values. In particular, for inorganic shells with 18% (w/w) of magnetic nanoparticles the volume phase transition of the microgels was shifted from 36 to 40 degrees C. In contrast, for shells consisting of 38% (w/w) magnetic nanoparticles the volume phase transition of the microgels was almost blocked, thus indicating that the microgel thermal response was strongly affected by the presence of the inorganic nanoparticles. The synthesized thermosensitive magnetic microgels are envisaged to be ideal for potential applications as thermosensitive targeted drug delivery systems.
In this work we demonstrate a DNA biosensor based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er nanoparticles and graphene oxide (GO). Monodisperse NaYF4:Yb,Er nanoparticles with a mean diameter of 29.1 ± 2.2 nm were synthesized and coated with a SiO2 shell of 11 nm, which allowed the attachment of single strands of DNA. When these DNA-functionalized NaYF4:Yb,Er@SiO2 nanoparticles were in the proximity of the GO surface, the π-π stacking interaction between the nucleobases of the DNA and the sp(2) carbons of the GO induced a FRET fluorescence quenching due to the overlap of the fluorescence emission of the NaYF4:Yb,Er@SiO2 and the absorption spectrum of GO. By contrast, in the presence of the complementary DNA strands, the hybridization leads to double-stranded DNA that does not interact with the GO surface, and thus the NaYF4:Yb,Er@SiO2 nanoparticles remain unquenched and fluorescent. The high sensitivity and specificity of this sensor introduces a new method for the detection of DNA with a detection limit of 5 pM.
Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag 2 S superdots) derived from chemically synthesized Ag 2 S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag 2 S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm −2) and doses (<0.5 mg kg −1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.