Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and tracking position for an event-based camera. It also includes spurious reduction and filtering algorithms while keeping the main features at the scene. The FPGA node also includes the stack of the network protocol to provide standard communication among other nodes. The powerlink IEEE 61158 industrial network is used to communicate the FPGA with a controller connected to a self-developed two-axis servo-controlled robot. The inverse kinematics model for the robot is included in the controller. To complete the system and provide a comparison, a traditional frame-based camera is also connected to the controller. Response time and robustness to lighting conditions are tested. Results show that, using the event-based camera, the robot can follow the object using fast image recognition achieving up to 85% percent data reduction providing an average of 99 ms faster position detection and less dispersion in position detection (4.96 mm vs. 17.74 mm in the Y-axis position, and 2.18 mm vs. 8.26 mm in the X-axis position) than the frame-based camera, showing that event-based cameras are more stable under light changes. Additionally, event-based cameras offer intrinsic advantages due to the low computational complexity required: small size, low power, reduced data and low cost. Thus, it is demonstrated how the development of new equipment and algorithms can be efficiently integrated into an industrial system, merging commercial industrial equipment with new devices.
Event-based cameras are not common in industrial applications despite they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network saturation and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial Ethernet buses. This work develops a tracking system based on an event-based camera. A bioinspired filtering algorithm to reduce noise and transmitted data while keeping the main features at the scene is implemented in FPGA which also serves as a network node. POWERLINK IEEE 61158 industrial network is used to communicate the FPGA with a controller connected to a self-developed two axis servo-controlled robot. The FPGA includes the network protocol to integrate the eventbased camera as any other existing network node. The inverse kinematics for the robot is included in the controller. In addition, another network node is used to control pneumatic valves blowing the ball at different speed and trajectories. To complete the system and provide a comparison, a traditional frame-based camera is also connected to the controller. The imaging data for the tracking system are obtained either from the eventbased or frame-based camera. The controller acts on the servos to be moved acting as a ball follower. Results show that the robot can accurately follow the ball using fast image recognition, with the intrinsic advantages of the event-based system (size, price, power). This works shows how the development of new equipment and algorithms can be efficiently integrated in an industrial system, merging commercial industrial equipment with the new devices so that new technologies can rapidly enter into the industrial field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.