Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
ABSTRACT.-Buim M.R., Mettifogo E., Timenetsky J., Kleven S. & Ferreira A.J.P. 2009 Mycoplasmas are important avian pathogens, which cause respiratory and joint diseases that result in large economic losses in Brazilian and world-wide poultry industry. This investigation regarding the main species of mycoplasmas, Mycoplasma gallisepticum (MG) and M. synoviae (MS), responsible for the above mentioned conditions, was carried out through PCR Multiplex analysis. One thousand and forty-six (1,046) samples of tracheal swabs and piped embryos were collected from 33 farms with laying hens, breeders, broilers or hatchery, located in the Brazilian states of São Paulo, Paraná and Pernambuco, where respiratory problems or drops in egg production had occurred. The MG and MS prevalence on the farms was 72.7%. These results indicated (1) high dissemination of mycoplasmas in the evaluated farms, with predominance of MS, either as single infectious agent or associated with other mycoplasmas in 20 farms (60.6%), and (2) an increase of MS and decrease of MG infection in Brazilian commercial poultry. Epidemiological survey on Mycoplasma gallisepticum and M. synoviae by multiplex PCR in commercial poultry 553
Mycoplasma genitalium (Mg) is a mollicute that causes a range of human urogenital infections. A hallmark of these bacteria is their ability to establish chronic infections that can persist despite completion of appropriate antibiotic therapies and intact and functional immune systems. Intimate adherence and surface colonization of mycoplasmas to host cells are important pathogenic features. However, their facultative intracellular nature is poorly understood, partly due to difficulties in developing and standardizing cellular interaction model systems. Here, we characterize growth and invasion properties of two Mg strains (G37 and 1019V). Mg G37 is a high-passage laboratory strain, while Mg 1019V is a low-passage isolate recovered from the cervix. The two strains diverge partially in gene sequences for adherence-related proteins and exhibit subtle variations in their axenic growth. However, with both strains and consistent with our previous studies, a subset of adherent Mg organisms invade host cells and exhibit perinuclear targeting. Remarkably, intranuclear localization of Mg proteins is observed, which occurred as early as 30 min after infection. Mg strains deficient in adherence were markedly reduced in their ability to invade and associate with perinuclear and nuclear sites.
Hemotrophic mycoplasmas infect a variety of mammals. Although infection in humans is rarely reported, an association with an immunocompromised state has been suggested. We report a case of a Mycoplasma haemofelis –like infection in an HIV-positive patient co-infected with Bartonella henselae .
A total of 301 cell cultures from 15 laboratories were monitored for mycoplasma (Mollicutes) using PCR and culture methodology. The infection was detected in the cell culture collection of 12 laboratories. PCR for Mollicutes detected these bacteria in 93 (30.9%) samples. Although the infection was confirmed by culture for 69 (22.9%) samples, PCR with generic primers did not detect the infection in five (5.4%). Mycoplasma species were identified with specific primers in 91 (30.2%) of the 98 samples (32.6%) considered to be infected. Mycoplasma hyorhinis was detected in 63.3% of the infected samples, M. arginini in 59.2%, Acholeplasma laidlawii in 20.4%, M. fermentans in 14.3%, M. orale in 11.2%, and M. salivarium in 8.2%. Sixty (61.2%) samples were co-infected with more than one mycoplasma species. M. hyorhinis and M. arginini were the microorganisms most frequently found in combination, having been detected in 30 (30.6%) samples and other associations including up to four species were detected in 30 other samples. Failure of the treatments used to eliminate mycoplasmas from cell cultures might be explained by the occurrence of these multiple infections. The present results indicate that the sharing of non-certified cells among laboratories may disseminate mycoplasma in cell cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.