Learned heuristics, though inadmissible, can provide very good guidance for bounded-suboptimal search. Given a single search state s and a learned heuristic h, evaluating h(s) is typically very slow relative to expansion time, since state-of-the-art learned heuristics are implemented as neural networks. However, by using a Graphics Processing Unit (GPU), it is possible to compute heuristics using batched computation. Existing approaches to batched heuristic computation are specific to satisficing search and have not studied the problem in the context of bounded-suboptimal search. In this paper, we present K-Focal Search, a bounded suboptimal search algorithm that in each iteration expands K nodes from the FOCAL list and computes the learned heuristic values of the successors using a GPU. We experiment over the Rubik's Cube domain using DeepCubeA, a very effective inadmissible learned heuristic. Our results show that K-Focal Search benefits both from batched computation and from the diversity in the search introduced by its expansion strategy. Over standard FS, it improves runtime by a factor of 6, expansions by up to three orders of magnitude, and finds better solutions, keeping the theoretical guarantees of Focal Search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.