This work presents the mechanical design and the kinematic navigation control system for a tricycle-wheeled robot (one drive-steer and two lateral fixed passive) with two underactuated mechanisms: a global compass and local evasive compass. The proposed goal-reference mechanism is inspired by the ancient Chinese south-seeking chariot (c. 200-265 CE) used as a navigation compass. The passive lateral wheels transmit an absolute angle from its differential speeds to automatically steer the front wheel. An obstacle-evasive compass mechanism is commutated for steering control when detecting nearby obstacles. The absolute and local compass mechanisms commutate each other to control to the robot's steering wheel to reach a goal while avoiding collisions. A kinematic control law is described in terms of the robot's geometric constraints and is combined with a set of first-order partial derivatives that allows interaction between the global and local steering mechanisms. Animated simulations and numerical computations about the robot's mechanisms and trajectories in multi-obstacle scenarios validate the proposed kinematic control system and its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.