Many experimental and predicted observations remain unanswered in the current proposed trees of life (ToL). Also, the current trend in reporting phylogenetic data is based in mixing together the information of dozens of genomes or entire conserved proteins. In this work, we consider the modularity of protein evolution and, using only two domains with duplicated ancestral topologies from a single, universal primordial protein corresponding to the RNA binding regions of contemporary bacterial glycyl tRNA synthetase (bacGlyRS), archaeal CCA adding enzyme (arch-CCAadd) and eukaryotic rRNA processing enzyme (euk-rRNA), we propose a rooted bacterial ToL that agrees with several previous observations unaccounted by the available trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.