The information systems of smart cities offer project developers, institutions, industry and experts the possibility to handle massive incoming data from diverse information sources in order to produce new information services for citizens. Much of this information has to be processed as it arrives because a real-time response is often needed. Stream processing architectures solve this kind of problems, but sometimes it is not easy to benchmark the load capacity or the efficiency of a proposed architecture. This work presents a real case project in which an infrastructure was needed for gathering information from drivers in a big city, analyzing that information and sending real-time recommendations to improve driving efficiency and safety on roads. The challenge was to support the real-time recommendation ser-vice in a city with thousands of simultaneous drivers at the lowest possible cost. In addition, in order to estimate the ability of an infrastructure to handle load, a simulator that emulates the data produced by a given amount of simultaneous drivers was also developed. Experiments with the simulator show how recent stream processing platforms like Apache Kafka could replace custom-made streaming servers in a smart city to achieve a higher scalability and faster responses, together with cost reduction.
The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.