Background Long-term survival of uncemented total joint replacements relies on osseointegration. With reduced bone stock impacted morselized allograft enhances early implant fixation but is subject to resorption. Purpose We therefore asked whether soaking morselized allograft in different concentrations of bisphosphonate before impaction would enhance fixation. Methods In each of 10 dogs, we implanted four unloaded titanium implants surrounded by a 2.5-mm gap into the proximal humerus, two implants in each humerus. The gap was filled with impacted morselized allograft soaked in saline or a low-, middle-, or high-dose bisphosphonate solution (0.005, 0.05, or 0.5 mg zoledronate/mL). At 4 weeks, the implants were evaluated by histomorphometric analysis and mechanical pushout test. Results The low dose of zoledronate increased new bone formation in the allograft but the high dose decreased new bone formation. The high dose of zoledronate resulted in the greatest inhibition of allograft resorption, whereas the low dose of zoledronate resulted in the lowest inhibition of allograft resorption. Implants surrounded allograft soaked in the low dose of zoledronate or saline had better fixation for all three mechanical parameters compared with implants surrounded by allograft soaked in the middle or high dose of zoledronate. Conclusions These data suggest bisphosphonate may enhance osseointegration of allografted implants and emphasize the need for preclinical testing of antiresorptive therapies.
The use of impacted, morselized allograft is a well-established way to provide initial stability of revision joint replacements. We investigated whether rinsing morselized allograft in bisphosphonate and subsequently impacting it around experimental titanium-coated implants would further facilitate biomechanical implant fixation and graft incorporation. In 10 dogs, a pair of titanium implants surrounded by a 2.5-mm gap was inserted into the proximal part of each humerus during two separate surgeries to allow two observation periods. The gap was filled with impacted, morselized allograft soaked in either bisphosphonate (alendronate, 2 mg/mL) or saline (control). Unbound alendronate was not rinsed away. During the first surgery, one pair of implants (alendronate and control) was inserted into one humerus. Eight weeks later, a second pair of implants was inserted into the contralateral humerus. The first pair of implants was observed for 12 weeks and the second pair for 4 weeks. Implants were evaluated by histomorphometry and biomechanical pushout test. We found substantially decreased biomechanical implant fixation for all implants surrounded by impacted, morselized allograft that had been soaked in alendronate. Furthermore, the alendronate treatment blocked formation of new bone and inhibited resorption of the graft material. Although limited by the specific dose of alendronate used and the omission of rinsing away excess bisphosphonate, this study warrants caution and calls for further experimental research before impacting alendronate-soaked morselized allograft around clinical joint replacements.
Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.
It has been shown that fixation of primary cementless joint replacement can independently be enhanced by either: (1) use of hydroxyapatite (HA) coated implants, (2) compaction of the peri-implant bone, or (3) local application of bisphosphonate. We investigated whether the combined effect ofHAcoating and bone compaction can be further enhanced with the use of local bisphosphonate treatment .HA-coated implants were bilaterally inserted into the proximal tibiae of 10 dogs. On one side local bisphosphonate was applied prior to bone compaction. Saline was used as control on the contralateral side. Implants were evaluated with histomorphometry and biomechanical pushout test. We found that bisphosphonate increased the peri-implant bone volume fraction (1.3-fold), maximum shear strength (2.1-fold), and maximum shear stiffness (2.7-fold). No significant difference was found in bone-to-implant contact or total energy absorption. This study indicates that local alendronate treatment can further improve the fixation of porous-coated implants that have also undergone HA-surface coating and peri-implant bone compaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.