We prove that the sequence of projective quantum SU(n) representations of the mapping class group of a closed oriented surface, obtained from the projective flat SU(n)-Verlinde bundles over Teichmüller space, is asymptotically faithful. That is, the intersection over all levels of the kernels of these representations is trivial, whenever the genus is at least 3. For the genus 2 case, this intersection is exactly the order 2 subgroup, generated by the hyper-elliptic involution, in the case of even degree and n = 2. Otherwise the intersection is also trivial in the genus 2 case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.