Interesterification of a blend of palm stearin and coconut oil (75:25, w/w), catalyzed by an immobilized Thermomyces lanuginosa lipase by silica granulation, Lipozyme TL IM, was studied for production of margarine fats in a 1-or 300-kg pilot-scale batch-stirred tank reactor. Parameters and reusability were investigated. The comparison was carried out between enzymatic and chemical interesterified products. Experimentally, Lipozyme TL IM had similar activity to Lipozyme IM for the interesterification of the blend. Within the range of 55-80°C, temperature had little influence on the degree of interesterification for 6-h reaction, but it had slight impact on the content of free fatty acids (FFA). Drying of Lipozyme TL IM from water content 6 to 3% did not affect its activity, whereas it greatly reduced FFA and diacylglycerol contents in the products. Lipozyme TL IM was stable in the 1-kg scale reactor at least for 11 batches and the 300-kg pilot-scale reactor at least for nine batches. Due to regiospecificity of the lipase (sn-1,3 specific), enzymatically interesterified products had different fatty acid distribution at sn-2 position from the chemically randomized products, implying the potential nutritional benefits of the new technology.Paper no. J9703 in JAOCS 78, 57-64 (January 2001).Interest in applications of enzyme technology for the production of plastic fats for food uses is increasing in both academia and industry. Currently the application of enzyme technology is limited since the price of current commercial lipases is too high for industry to produce low-price plastic fats. A new immobilized Thermomyces (Humicola) lanuginosa lipase, named Lipozyme TL IM, was recently developed with the immobilization method of silica granulation (1). Lipozyme TL IM has sn-1,3 specificity and hydrophilic character. It is less expensive than the commonly applied commercial lipase Lipozyme IM (Rhizomucor miehei lipase) and offers an opportunity for industry to reduce the process cost and make the production of low-price plastic fats economically competitive to the conventional chemical randomization.Previously T. lanuginosa lipase was investigated mostly in solvent systems in free-state or immobilized forms (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14). From kinetic studies, it was found that immobilized T. lanuginosa lipase had different characteristics depending on the solvent systems and the hydrophobicity of carriers (2,7). Transesterification and alcoholysis reactions catalyzed by the immobilized lipases of R. miehei and T. lanuginosa on Silica Gel 60 showed less regiospecificity in hexane media, whereas they showed strong 1,3-specificity in a more polar system using diethyl ether as the medium (2). The lipolytic activity of immobilized T. lanuginosa lipase depended largely on the substrate used and hydrophobicity of its carrier. A highly hydrophobic carrier enhanced lipase activity for alcoholysis reactions, whereas the reverse effect was observed for acylglycerol synthesis (7). Comparison of hydrolysis and esterificat...
Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactorLipozyme IM-catalyzed interesterification of the oil blend between palm stearin and coconut oil (75/25 w/w) was studied for the production of margarine fats in a 1 kg scale batch stirred tank reactor. Parameters such as lipase load, water content, temperature, and reaction time were investigated. The reusability of Lipozyme IM was also studied under optimized conditions. The interesterification products were monitored by analysis of triacylglycerol profiles, the contents of diacylglycerols, free fatty acids (FFA), and solid fat contents. The contents of some triacylglycerol species, which were categorized by equivalent carbon number (ECN), namely ECN34, 36, 48, and 50, decreased by 6.0, 5.9, 5.8, and 13.7%, respectively, after enzymatic interesterification, similar to the reduction of those species after chemical interesterification, 6.6, 6.0, 7.1, and 12.9%, respectively. On the other hand, those of ECN38, 40, 42, 44, and 46 increased by 1.1, 1.6, 6.8, 16.7, and 6.5%, respectively, in comparison with the increase of those species after chemical interesterification, 0.2, 1.5, 6.5, 17.0, and 9.2%, respectively. Lipase load and reaction time had great influence on the degree of interesterification. A Lipozyme IM load of 6% was required for a reaction of 6 h and at 60°C, to reach a stable degree of interesterification. Temperature variation in the range of 50-75°C did not affect the reaction degree as well as the contents of diacylglycerols, but the content of FFA slightly increased with higher temperature. Addition of water to the enzyme increased the contents of diacylglycerols and FFA in the products linearly. However, it had no effect on the degree of interesterification for the first batch when the enzyme was reused. Lipozyme IM was stable in the 10-batch test after adjusting the water content in the system. The relationship between the content of water in the system and that of FFAs in the products was evaluated and discussed. * The molecular weight of the oil blend was calculated as 249.57 g/mol and the enzyme load was 10%.
Lipozyme IM‐catalyzed interesterification of the oil blend between palm stearin and coconut oil (75/25 w/w) was studied for the production of margarine fats in a 1 kg scale batch stirred tank reactor. Parameters such as lipase load, water content, temperature, and reaction time were investigated. The reusability of Lipozyme IM was also studied under optimized conditions. The interesterification products were monitored by analysis of triacylglycerol profiles, the contents of diacylglycerols, free fatty acids (FFA), and solid fat contents. The contents of some triacylglycerol species, which were categorized by equivalent carbon number (ECN), namely ECN34, 36, 48, and 50, decreased by 6.0, 5.9, 5.8, and 13.7%, respectively, after enzymatic interesterification, similar to the reduction of those species after chemical interesterification, 6.6, 6.0, 7.1, and 12.9%, respectively. On the other hand, those of ECN38, 40, 42, 44, and 46 increased by 1.1, 1.6, 6.8, 16.7, and 6.5%, respectively, in comparison with the increase of those species after chemical interesterification, 0.2, 1.5, 6.5, 17.0, and 9.2%, respectively. Lipase load and reaction time had great influence on the degree of interesterification. A Lipozyme IM load of 6% was required for a reaction of 6 h and at 60 °C, to reach a stable degree of interesterification. Temperature variation in the range of 50—75 °C did not affect the reaction degree as well as the contents of diacylglycerols, but the content of FFA slightly increased with higher temperature. Addition of water to the enzyme increased the contents of diacylglycerols and FFA in the products linearly. However, it had no effect on the degree of interesterification for the first batch when the enzyme was reused. Lipozyme IM was stable in the 10‐batch test after adjusting the water content in the system. The relationship between the content of water in the system and that of FFAs in the products was evaluated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.