The purpose of this paper is threefold: firstly, the local Successive Mean Quantization Transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up Sparse Network of Winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the Receiver Operation Characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from
Abstract-This paper presents a new approach for fingerprint enhancement by using directional filters and binarization. A straightforward method for automatically tuning the size of local area is obtained by analyzing entire fingerprint image in the frequency domain. Hence, the algorithm will adjust adaptively to the local area of the fingerprint image, independent on the characteristics of the fingerprint sensor or the physical appearance of the fingerprints. Frequency analysis is carried out in the local areas to design directional filters. Experimental results are presented.
Abstract-Human fingerprints are rich in details denoted minutiae. In this paper a method of minutiae extraction from fingerprint skeletons is described. To identify the different shapes and types of minutiae a neural network is trained to work as a classifier. The proposed neural network is applied throughout the fingerprint skeleton to locate various minutiae. A scheme to speed up the process is also presented. Extracted minutiae can then be used as identification marks for automatic fingerprint matching.
This paper introduces the concept of a mapogram. A mapogram may be viewed as a special form of spatiogram, which is a histogram containing additional spatial information. Additionally, this paper presents theory relevant to the creation of a proposed mapogram. A similarity measure derived from the Bhattacharyya coefficient is obtained in order to make comparisons between mapograms. Examples using a mapogram are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.