Bacteriophage T7, considered the “model phage” of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle.
The Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. We here characterise Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range and identified LPS as the likely phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting towards temperate behavior. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization, yet encodes key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. This data generated a bird’s-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNAP-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision), are actively co-transcribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase, raises questions on the regulation of this polymerase, and suggests it is interwoven with the MarR-based regulation. This transcriptomics-driven characterisation of LUZ100 supports the increasing evidence that T7-like phages should not straightforwardly be marked as having a strictly lytic lifecycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.