This study demonstrates a large variety in cochlear morphology, which significantly impacts electrode position in terms of modiolus proximity and insertion depth. The effect size is, however, relatively small compared with surgical insertion distance. PCA is shown to be an accurate reduction method for describing cochlear shape.
SES and DES are equivalent with regard to SOE and channel interaction. The excitation site of DES has the predicted displacement compared with the excitation region induced by the neighboring single-electrode contact. Unfortunately, no predictor for the number of intermediate pitches was found.
Although the decision to implant should consider individual ear differences and other factors that might apply to a particular case, based on our data, all patients with preoperative scores of either 80% (phonemes correct) or 60% (words correct) and lower in an optimal-aided situation are potential candidates for a cochlear implant, provided that their preoperative speech perception score decreases below 50% (phonemes correct) or 20% (words correct), when background noise is added at a +5 dB signal to noise ratio.
Simultaneous stimulation on two contacts (current steering) creates intermediate pitches between the physical contacts in cochlear implants. All recent studies on current steering have focused on Most Comfortable Loudness levels and not at low stimulation levels. This study investigates the efficacy of dual electrode stimulation at lower levels, thereby focusing on the requirements to correct for threshold variations. With a current steered signal, threshold levels were determined on 4 different electrode pairs for 7 different current steering coefficients (α). This was done psychophysically in twelve postlingually deafened cochlear implant (HiRes90K, HiFocus1J) users and, in a computer model, which made use of three different neural morphologies. The analysis on the psychophysical data taking all subjects into account showed that in all conditions there was no significant difference between the threshold level of the physical contacts and the intermediate created percepts, eliminating the need for current corrections at these very low levels. The model data showed unexpected drops in threshold in the middle of the two physical contacts (both contacts equal current). Results consistent with this prediction were obtained for a subset of 5 subjects for the apical pair with wider spacing (2.2 mm). Further analysis showed that this decrease was only observed in subjects with a long duration of deafness. For current steering on adjacent contacts, the results from the psychophysical experiments were in line with the results from computational modelling. However, the dip in the threshold profile could only be replicated in the computational model with surviving peripheral processes without an unmyelinated terminal. On the basis of this result, we put forward that the majority of the surviving spiral ganglion cells in the cochlea in humans with a long duration of deafness still retain peripheral processes, but have lost their unmyelinated terminals.
Spanning over wider electrode distance is feasible. With increasing electrode spanning distance, more current compensation is needed to maintain equal loudness, and a gradual deterioration in the just noticeable difference for pitch is observed. However, the pitch progression is linear. For a spanned signal with equal proportions of current delivered to both electrodes, pitch is equivalent to that produced by an intermediate physical electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.