With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.
Background Untargeted metabolomics approaches based on mass spectrometry obtain comprehensive profiles of complex biological samples. However, on average only 10% of the molecules can be annotated. This low annotation rate hampers biochemical interpretation and effective comparison of metabolomics studies. Furthermore, de novo structural characterization of mass spectral data remains a complicated and time-intensive process. Recently, the field of computational metabolomics has gained traction and novel methods have started to enable large-scale and reliable metabolite annotation. Molecular networking and machine learning-based in-silico annotation tools have been shown to greatly assist metabolite characterization in diverse fields such as clinical metabolomics and natural product discovery. Aim of review We highlight recent advances in computational metabolite annotation workflows with a special focus on their evaluation and comparison with other tools. Whilst the progress is substantial and promising, we also argue that inconsistencies in benchmarking different tools hamper users from selecting the most appropriate and promising method for their research. We summarize benchmarking strategies of the different tools and outline several recommendations for benchmarking and comparing novel tools. Key scientific concepts of review This review focuses on recent advances in mass spectral library-based and machine learning-supported metabolite annotation workflows. We discuss large-scale library matching and analogue search, the current bloom of mass spectral similarity scores, and how molecular networking has changed the field. In addition, the potentials and challenges of machine learning-supported metabolite annotation workflows are highlighted. Overall, recent developments in computational metabolomics have started to fundamentally change metabolomics workflows, and we expect that as a community we will be able to overcome current method performance ambiguities and annotation bottlenecks.
Microbial specialized metabolites are key mediators in host-microbiome interactions. Most of the chemical space produced by the microbiome currently remains unexplored and uncharacterized.
Metabolomics-driven discoveries of biological samples remain hampered by the grand challenge of metabolite annotation and identification. Only few metabolites have an annotated spectrum in spectral libraries; hence, searching only for exact library matches generally returns a few hits. An attractive alternative is searching for so-called analogues as a starting point for structural annotations; analogues are library molecules which are not exact matches, but display a high chemical similarity. However, current analogue search implementations are not yet very reliable and relatively slow. Here, we present MS2Query, a machine learning-based tool that integrates mass spectral embedding-based chemical similarity predictors (Spec2Vec and MS2Deepscore) as well as detected precursor masses to rank potential analogues and exact matches. Benchmarking MS2Query on reference mass spectra and experimental case studies demonstrates an improved reliability and scalability. Thereby, MS2Query offers exciting opportunities for further increasing the annotation rate of complex metabolite mixtures and for discovering new biology.
Background It is well-known that the microbiome produces a myriad of specialised metabolites with diverse functions. To better characterise their structures and identify their producers in complex samples, integrative genome and metabolome mining is becoming increasingly popular. Metabologenomic co-occurrence-based correlation scoring methods facilitate the linking of metabolite mass fragmentation spectra (MS/MS) to their cognate biosynthetic gene clusters (BGCs) based on shared absence/presence patterns of metabolites and BGCs in paired omics datasets of multiple strains. Recently, these methods have been made more readily accessible through the NPLinker platform. However, co-occurrence-based approaches usually result in too many candidate links to manually validate. To address this issue, we introduce a generic feature-based correlation method that matches chemical compound classes between BGCs and MS/MS spectra. Results To automatically reduce the long lists of potential BGC-MS/MS spectrum links, we match natural product (NP) ontologies previously independently developed for genomics and metabolomics and developed NPClassScore: an empirical class matching score that we also implemented in the NPLinker platform. By applying NPClassScore on three paired omics datasets totalling 189 bacterial strains, we show that the number of links is reduced by on average 63% as compared to using a co-occurrence-based strategy alone. We further demonstrate that 96% of experimentally validated links in these datasets are retained and prioritised when using NPClassScore. Conclusion The matching genome-metabolome class ontologies provide a starting point for selecting plausible candidates for BGCs and MS/MS spectra based on matching chemical compound class ontologies. NPClassScore expedites genome/metabolome data integration, as relevant BGC-metabolite links are prioritised, and researchers are faced with substantially fewer proposed BGC-MS/MS links to manually inspect. We anticipate that our addition to the NPLinker platform will aid integrative omics mining workflows in discovering novel NPs and understanding complex metabolic interactions in the microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.