In this study experimental and modelling methods are used to examine the microstructural and bending responses of laser-formed commercially pure titanium grade 2. The in situ bending angle response is measured for different processing parameters utilizing 3D digital image correlation. The microstructural changes are observed using electron backscatter diffraction. Finite element modelling is used to analyse the heat transfer and temperature field inside the material. It has been proven that the laser bending process is not only controlled by processing parameters such as laser power and laser beam scanning speed, but also by surface absorption. Grain size appears to have no influence on the final bending angle, however, sandblasted samples showed a considerably higher final bending angle. Experimental and simulation results suggest that the laser power has a larger influence on the final bending angle than that of the laser transverse speed. The microstructure of the laser heat-affected zone consists of small refined grains at the top layer followed by large elongated grains. Deformation mechanisms such as slip and twinning were observed in the heat-affected zone, where their distribution depends on particular processing parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.