We present a Character-Word Long ShortTerm Memory Language Model which both reduces the perplexity with respect to a baseline word-level language model and reduces the number of parameters of the model. Character information can reveal structural (dis)similarities between words and can even be used when a word is out-of-vocabulary, thus improving the modeling of infrequent and unknown words. By concatenating word and character embeddings, we achieve up to 2.77% relative improvement on English compared to a baseline model with a similar amount of parameters and 4.57% on Dutch. Moreover, we also outperform baseline word-level models with a larger number of parameters.
In this paper we present a novel clustering technique for compound words. By mapping compounds onto their semantic heads, the technique is able to estimate n-gram probabilities for unseen compounds. We argue that compounds are well represented by their heads which allows the clustering of rare words and reduces the risk of overgeneralization. The semantic heads are obtained by a two-step process which consists of constituent generation and best head selection based on corpus statistics. Experiments on Dutch read speech show that our technique is capable of correctly identifying compounds and their semantic heads with a precision of 80.25% and a recall of 85.97%. A class-based language model with compound-head clusters achieves a significant reduction in both perplexity and WER.
Neural cache language models (LMs) extend the idea of regular cache language models by making the cache probability dependent on the similarity between the current context and the context of the words in the cache. We make an extensive comparison of 'regular' cache models with neural cache models, both in terms of perplexity and WER after rescoring first-pass ASR results. Furthermore, we propose two extensions to this neural cache model that make use of the content value/information weight of the word: firstly, combining the cache probability and LM probability with an informationweighted interpolation and secondly, selectively adding only content words to the cache. We obtain a 29.9%/32.1% (validation/test set) relative improvement in perplexity with respect to a baseline LSTM LM on the WikiText-2 dataset, outperforming previous work on neural cache LMs. Additionally, we observe significant WER reductions with respect to the baseline model on the WSJ ASR task.
We present Sparse Non-negative Matrix (SNM) estimation, a novel probability estimation technique for language modeling that can efficiently incorporate arbitrary features. We evaluate SNM language models on two corpora: the One Billion Word Benchmark and a subset of the LDC English Gigaword corpus. Results show that SNM language models trained with n-gram features are a close match for the well-established Kneser-Ney models. The addition of skip-gram features yields a model that is in the same league as the state-of-the-art recurrent neural network language models, as well as complementary: combining the two modeling techniques yields the best known result on the One Billion Word Benchmark. On the Gigaword corpus further improvements are observed using features that cross sentence boundaries. The computational advantages of SNM estimation over both maximum entropy and neural network estimation are probably its main strength, promising an approach that has large flexibility in combining arbitrary features and yet scales gracefully to large amounts of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.