It is commonly known that Pickering emulsions are extremely stable against coalescence and are, therefore, potentially interesting for the synthesis of new materials, such as colloidosomes, microcapsules, composite particles, foams, and so on. However, for the efficient synthesis of such materials, one also has to consider the colloidal stability against aggregation, which is often neglected. In this study, it is demonstrated that steric stabilization is provided to Pickering emulsion droplets by the adsorption of poly(styrene-block-ethylene-co-propylene) (pS-b-EP) and that it is a requirement for the efficient synthesis of polymeric microcapsules. Monodisperse polystyrene particles of 648 nm are synthesized by soap-free emulsion polymerization. A model Pickering emulsion is then formed by the addition of sodium chloride at a critical concentration of 325 mM and mixing it with either heptane or decane. Subsequently, pS-b-EP is added to the Pickering emulsion to provide steric stabilization. Size exclusion chromatography is used to prove and quantify the adsorption of pS-b-EP onto the Pickering emulsion droplets. A maximum surface coverage of 1.3 mg/m(2) is obtained after 2 h, which is approximately one-third of the adsorption on a pure pS surface. We believe that the presence of polar sulfate groups on the particle, which initially stabilized the particle in water, reduces the adsorption of pS-b-EP. Microcapsules are formed by heating the Pickering emulsion above the glass-transition temperature of the particles. Significant aggregation is observed, if no pS-b-EP is used. The adsorption of pS-b-EP provides steric stabilization to the Pickering emulsion droplets, reduces aggregation significantly, and ultimately leads to the successful and efficient synthesis of pS microcapsules.
The assembly of sterically stabilized colloids at liquid-liquid interfaces is studied with the self-consistent field (SCF) theory using the discretization scheme that was developed by Scheutjens, Fleer, and co-workers. The model is based on a poly(methyl methacrylate) (pMMA) particle with poly(isobutylene) (pIB) grafted to the surface. The stabilizing groups on the particle surface have a significant effect on the interfacial assembly and, therefore, also on the formation and properties of Pickering emulsions. The wetting behavior of the particle is altered by the presence of the stabilizing groups, which affects the equilibrium position of the particles at the interface. The stabilizing groups can also lead to an activation barrier before interfacial adsorption, analogous to the steric repulsion between two particles. These effects are numerically solved with the SCF theory. It is commonly known that flocculating conditions enhance the interfacial adsorption and yield stable Pickering emulsions, which is confirmed in this work. Additionally, it is concluded that those conditions are not an absolute requirement. There is a window of stabilizer concentrations Γ(pIB), 2.2-3.3 mg/m(2) pIB, that shows both partial wetting and colloidal stability. The activation barrier for interfacial assembly is 140-550 k(B)T and is an order of magnitude higher than the colloidal stability. The difference can be attributed to the unfavorable interaction of pIB with water and a difference in geometry (plate-sphere vs sphere-sphere). This study demonstrates the interplay and provides a quantitative comparison between the wetting behavior and the colloidal stability, and it gives a better understanding of the colloidal assembly at soft interfaces and formation of Pickering emulsions in general.
A novel procedure was developed to determine the direction of silica growth during the formation of a silica shell around aqueous microdroplets in water-in-oil Pickering emulsions, and it was found that the shell grows from the inside to the outside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.