The generation of genome-wide data derived from methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) has become a major tool for epigenetic studies in health and disease. The computational analysis of such data, however, still falls short on accuracy, sensitivity, and speed. We propose a time-efficient statistical method that is able to cope with the inherent complexity of MeDIP-seq data with similar performance compared with existing methods. In order to demonstrate the computational approach, we have analyzed alterations in DNA methylation during the differentiation of human embryonic stem cells (hESCs) to definitive endoderm. We show improved correlation of normalized MeDIP-seq data in comparison to available whole-genome bisulfite sequencing data, and investigated the effect of differential methylation on gene expression. Furthermore, we analyzed the interplay between DNA methylation, histone modifications, and transcription factor binding and show that in contrast to de novo methylation, demethylation is mainly associated with regions of low CpG densities.[Supplemental material is available at http://www.genome.org. The MeDIP-seq data from this study have been submitted to NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA012665. The bead array gene expression data from this study have been submitted to the NCBI Gene Expression Omnibus (http:// www.ncbi.nlm.nih.gov/geo) under accession no. GSE21715. The MEDIPS software package, manual, data, and example data are available online at http://medips.molgen.mpg. et al. 2005), which can be detected either by tiling arrays (MeDIPChip) or by next-generation sequencing (MeDIP-seq). Methylation profiles obtained by the MeDIP approach are not base pair-specific but reflect methylation levels on a resolution restricted by the size of the sonicated DNA fragments after amplification and size selection. In contrast, bisulfite sequencing detects cytosine methylation on a base-pair level. Although whole-genome single-base resolution maps have been generated (Lister et al. 2008(Lister et al. , 2009, such techniques cannot yet be cost-effectively applied to screen large sets of sequences or samples. Reduced representation bisulfite sequencing (RRBS) was introduced in order to address this issue by selecting only some regions of the genome for sequencing. Here, reduced representation is achieved by the size-fractionation of DNA fragments after restriction enzyme digestion (Meissner et al. 2008;Laird 2010). In contrast to bisulfite sequencing, MeDIP-seq-derived methylation data are of far lower resolution, and therefore, it remains difficult to discriminate between CpG and non-CpG methylation when single-end short reads are considered. However, MeDIP-seq covers nearly as many CpGs per sample genome as does the more expensive whole-genome shotgun bisulfite sequencing (WGSBS) approach (Laird 2010). An advantage of the MeDIP approach is the generation of unbiased, cost-effective, and fullgenome methylation levels w...
Recent years have witnessed the groundbreaking success of immune checkpoint blockage (ICB) in metastasized malignant melanoma. However, biomarkers predicting the response to ICB are still urgently needed. In the present study, we investigated CTLA4 promoter methylation (mCTLA4) in 470 malignant melanoma patients from The Cancer Genome Atlas (non-ICB cohort) and in 50 individuals with metastasized malignant melanomas under PD-1/CTLA-4-targeted immunotherapy (ICB cohort). mCTLA4 levels were quantified using the Infinium HumanMethylation450 BeadChip (non-ICB cohort) and methylation-specific quantitative real-time PCR in DNA formalin-fixed and paraffin-embedded tissues (ICB cohort). Methylation levels were associated with molecular and clinicopathological variables and analyzed with respect to response (irRECIST) and overall survival. CTLA-4 mRNA and mCTLA4 showed a significant inverse correlation (non-ICB cohort: Spearman's ρ = -0.416, P < 0.001). In ICB-treated melanoma patients, low mCTLA4 was further strongly correlated with response to therapy (P = 0.009, ANOVA) and overall survival (hazard ratio = 2.06 [95% CI: 1.29-3.29], P = 0.003). Our data strongly support the assumption that mCTLA4 predicts response to both anti-PD-1 and anti-CTLA-4 targeted ICB in melanoma and provides paramount information for the selection of patients likely to respond to ICB.
BackgroundThe rapid development of programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors has generated an urgent need for biomarkers assisting the selection of patients eligible for therapy. The use of PD-L1 immunohistochemistry, which has been suggested as a predictive biomarker, however, is confounded by multiple unresolved issues. The aim of this study therefore was to quantify PD-L1 DNA methylation (mPD-L1) in prostate tissue samples and to evaluate its potential as a biomarker in prostate cancer (PCa).ResultsIn the training cohort, normal tissue showed significantly lower levels of mPD-L1 compared to tumor tissue. High mPD-L1 in PCa was associated with biochemical recurrence (BCR) in univariate Cox proportional hazards (hazard ratio (HR)=2.60 [95%CI: 1.50-4.51], p=0.001) and Kaplan-Meier analyses (p<0.001). These results were corroborated in an independent validation cohort in univariate Cox (HR=1.24 [95%CI: 1.08-1.43], p=0.002) and Kaplan-Meier analyses (p=0.029). Although mPD-L1 and PD-L1 protein expression did not correlate in the validation cohort, both parameters added significant prognostic information in bivariate Cox analysis (HR=1.22 [95%CI: 1.05-1.42], p=0.008 for mPD-L1 and HR=2.58 [95%CI: 1.43-4.63], p=0.002 for PD-L1 protein expression).MethodsmPD-L1 was analyzed in a training cohort from The Cancer Genome Atlas (n=498) and was subsequently measured in an independent validation cohort (n=299) by quantitative methylation-specific real-time PCR. All patients had undergone radical prostatectomy.ConclusionsmPD-L1 is a promising biomarker for the risk stratification of PCa patients and might offer additional relevant prognostic information to the implemented clinical parameters, particularly in the setting of immune checkpoint inhibition.
This study evaluates promoter methylation of the programmed cell death ligand 1 (PD-L1) as a biomarker in a cohort of 383 colorectal cancer patients. PD-L1 methylation (mPD-L1) was inversely correlated with PD-L1 mRNA expression (p D 0.001) and was associated with significantly shorter overall survival (OS, p D 0.003) and recurrence-free survival (RFS, p < 0.001). In age-stratified multivariate Cox proportional hazards analyses including sex, tumor, nodal, distant metastasis categories, microsatellite instability (MSI)-status, and PD-L1 mRNA, mPD-L1 is classified as an independent prognostic factor (OS: p D 0.030; RFS: p < 0.001). Further studies are needed to evaluate PD-L1 methylation as a biomarker for response prediction of immunotherapies targeting the PD-1/PD-L1 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.