We demonstrate that the conductance through a single-electron transistor at low temperature is in quantitative agreement with predictions of the equilibrium Anderson model. When an unpaired electron is localized within the transistor, the Kondo effect is observed. Tuning the unpaired electron's energy toward the Fermi level in nearby leads produces a cross-over between the Kondo and mixed-valence regimes of the Anderson model. PACS 75.20.Hr, 73.23.Hk, 72.15.Qm,
We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.
The correlated phases in a two-dimensional electron system with a high index partially filled Landau level are studied in transport under nonequilibrium conditions by imposing a dc-current drive. At filling 1/4 and 3/4 of these Landau levels, where the charge density wave picture predicts an isotropic bubble phase, the dc drive induces anisotropic transport behavior consistent with stripe order. The easy axis of the emerging anisotropic phase is perpendicular to the drive. At half filling the anisotropic stripe phase is stabilized by the dc drive provided drive and easy-axis directions coincide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.