Aerial surveys on seagrass (Zostera spp.) indicate a three to fourfold increase in bed area from 1994 to 2006 with up to 100 km 2 or 11% of intertidal Xats in the Northfrisian Wadden Sea (coastal eastern North Sea), observed at seasonal maximum in August when Xying during low tide exposure 300 to 500 m above ground. When viewed from the air, diYculties in distinguishing between seagrass and green algae and a lack of contrast on dark-coloured mudXats are sources of error in areal estimates. Particularly the positioning of beds remote from shores was imprecise. However, the consistency in method over time gives conWdence to the inferred positive trend which is opposite to the global pattern. Both, the spatial pattern and a recent decrease in storminess suggest that sediment stability is the key factor for seagrass dynamics in this tidal area. On exposed sand Xats, high sediment mobility may be limiting and along the sheltered mainland shore land claim activities with high accretion rates may cause a scarcity of seagrass. The potential area of seagrass beds may be twice as large as the realized maximum in 2006 but eventually the rising sea level will reverse the observed seagrass expansion.
The Wadden Sea along the North Sea coasts of Denmark, Germany, and the Netherlands is the largest unbroken system of intertidal sand and mud flats in the world. Its habitats are highly productive and harbour high standing stocks and densities of benthic species, well adapted to the demanding environmental conditions. Therefore, the Wadden Sea is one of the most important areas for migratory birds in the world and thus protected by national and international legislation, which amongst others requires extensive monitoring. Due to the inaccessibility of major areas of the Wadden Sea, a classification approach based on optical and radar remote sensing has been developed to support environmental monitoring programmes. In this study, the general classification framework as well as two specific monitoring cases, mussel beds and seagrass meadows, are presented. The classification of mussel beds profits highly from inclusion of radar data due to their rough surface and achieves agreements of up to 79 % with areal data from the regular monitoring programme. Classification of seagrass meadows reaches even higher agreements with monitoring data (up to 100 %) and furthermore captures seagrass densities as low as 10 %. The main classification results are information on area and location of individual habitats. These are needed to fulfil environmental legislation requirements. One of the major advantages of this approach is the large areal coverage with individual satellite images, allowing simultaneous assessment of both accessible and inaccessible areas and thus providing a more complete overall picture.
Abstract:We show that high-resolution space-borne synthetic aperture radar (SAR) imagery with pixel sizes smaller than 1 m 2 can be used to complement archaeological surveys on intertidal flats. After major storm surges in the 14th and 17th centuries ("Grote Mandrenke"), vast areas on the German North Sea coast were lost to the sea. Areas of settlements and historical farmland were buried under sediments for centuries, but when the surface layer is driven away under the action of wind, currents, and waves, they appear again on the Wadden Sea surface. However, frequent flooding and erosion of the intertidal flats make any archaeological monitoring a difficult task, so that remote sensing techniques appear to be an efficient and cost-effective instrument for any archaeological surveillance of that area. Space-borne SAR images clearly show remains of farmhouse foundations and of former systems of ditches, dating back to the times before the "Grote Mandrenke". In particular, the very high-resolution acquisition ("staring spotlight") mode of the TerraSAR/TanDEM-X satellites allows detecting various kinds of remains of historical land use at high precision. Moreover, SARs working at lower microwave frequencies (e.g., that on Radarsat-2) may complement archaeological surveys of historical cultural traces, some of which have been unknown so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.