Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.
Background The analgesic activity of morphine-6-glucuronide (M-6-G) is well recognized for its contribution to the effects of morphine and its possible use as an opioid analgesic with a wider therapeutic range than morphine. The present study attempted to quantify the relative contribution of M-6-G to analgesia observed after systemic administration of morphine. Methods In a placebo-controlled, sixfold crossover study in 20 healthy men, the effects of M-6-G were assessed at steady-state plasma concentrations of M-6-G identical to and two and three times higher than those measured after administration of morphine. Morphine and M-6-G were administered as an intravenous bolus followed by infusion over 4 h. Dosage A was M-6-G-bolus of 0.015 mg/kg plus infusion of 0.0072 mg x kg(-1) x h(-1). Dosage B was M-6-G-bolus of 0.029 mg/kg plus infusion of 0.014 mg x kg(-1) x h(-1). Dosage C was M-6-G-bolus of 0.044 mg/kg plus infusion of 0.022 mg x kg(-1) x h(-1). Dosage D was a morphine bolus of 0.14 mg/kg plus infusion of 0.05 mg x kg(-1) x h(-1) for 4 h. Dosage E was M-6-G combined with morphine (doses A + D). Dosage F was a placebo. The analgesic effects of M-6-G and morphine were measured before administration of the bolus and after 3.5 h using an experimental pain model based on pain-related cortical potentials and pain ratings after specific stimulation of the nasal nociceptor with short pulses of gaseous carbon dioxide. Results Morphine significantly reduced subjective and objective pain correlates compared with placebo. In contrast, M-6-G produced no statistically significant effects. The addition of M-6-G to morphine did not increase the effects of morphine. Morphine produced significantly more side effects than M-6-G. Conclusion After short-term intravenous administration at doses that produce plasma concentrations of M-6-G similar to those seen after administration of morphine, M-6-G had no analgesic effects in the present placebo-controlled study in healthy volunteers.
Patient-controlled analgesia (PCA) has become standard procedure in the clinical treatment of pain. Its widespread use in patients with all kinds of diseases opens a variety of possible interactions between analgesics used for PCA and other drugs that might be administered concomitantly to the patient. Many of these drug interactions are of little clinical importance. However, some drug interactions have been reported to result in serious clinical problems. Drug interactions can either predominantly affect the pharmacokinetics or pharmacodynamics of the drug. Most important pharmacokinetic drug interactions occur at the level of drug metabolism or protein binding. Acceleration of methadone metabolism caused by cytochrome P450 (CYP) 3A4 induction by antiretroviral drugs or rifampicin (rifampin) has caused methadone withdrawal symptoms. Lack of morphine formation from codeine as a result of CYP2D6 inhibition by quinidine results in an almost complete loss of the analgesic effects of codeine. Alterations of methadone protein binding caused by an inhibition of alpha1-acid glycoprotein synthesis by alkylating substances are another possibility for predominantly pharmacokinetically based drug interactions during PCA. Furthermore, inhibition of P-glycoprotein by anticancer drugs could result in altered transmembrane transport of morphine, methadone or fentanyl, although this has not been shown to be of clinical relevance. Synergistic effects of systemically administered opioids with spinally or topically delivered opioids or anaesthetics have been reported frequently. The same is true for the opioid-sparing effects of coadministered non-opioid analgesics. Antidepressants, anticonvulsants or alpha2-adrenoreceptor agonists have also been shown to exert additive analgesic effects when administered together with an opioid. Inconsistent findings, however, are reported regarding the treatment of patients with opioid-induced nausea and sedation, since coadministration of antiemetics either increased or decreased the respective adverse effects or revealed additional unwanted drug effects.
M6G may contribute to the analgesic and side effects seen with long-term morphine treatment. The current model of morphine and M6G pharmacokinetics after oral administration of morphine may serve as a pharmacokinetic basis for experiments evaluating the analgesic contribution of M6G with long-term oral dosing of morphine.
Our data suggest trigeminal hyperexcitability in migraineurs. A general increase of nasal chemosensitivity is not supported because of smaller olfactory ERP amplitudes in migraineurs. Olfactory ERPs discriminate better than trigeminal ERPs between migraineurs and controls, emphasizing the significance of the olfactory system in migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.