Abstract. The interaction between wind turbines through their wakes is an important aspect of the conception and operation of a wind farm. Wakes are characterized by an elevated turbulence level and a noticeable velocity deficit, which causes a decrease in energy output and fatigue on downstream turbines. In order to gain a better understanding of this phenomenon this work uses large-eddy simulations together with an actuator line model and different ambient turbulence imposed as boundary conditions. This is achieved by using the Simulator fOr Wind Farm Applications (SOWFA) framework from the National Renewable Energy Laboratory (NREL) (USA), which is first validated against another popular Computational Fluid Dynamics (CFD) framework for wind energy, EllipSys3D, and then verified against the experimental results from the Model Experiment in Controlled Conditions (MEXICO) and New Model Experiment in Controlled Conditions (NEW MEXICO) wind tunnel experiments. By using the predicted torque as a global indicator, the optimal width of the distribution kernel for the actuator line is determined for different grid resolutions. Then, the rotor is immersed in homogeneous isotropic turbulence and a shear layer turbulence with different turbulence intensities, allowing us to determine how far downstream the effect of the distinct blades is discernible. This can be used as an indicator of the extents of the near wake for different flow conditions.
Abstract. The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution and the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behaviour, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. The main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.
Abstract. The interaction between wind turbines through their wakes is an important aspect of the conception and operation of a wind farm. Wakes are characterized by an elevated turbulence level and a noticable velocity deficit which causes a decrease in energy output and fatigue on downstream turbines. In order to gain a better understanding of this phenomenon this works uses large-eddy simulations together with an actuator line model and different ambient turbulences imposed as boundary conditions. This is achieved by using the SOWFA framework from NREL (USA) which is first validated against another popular CFD 5 framework for wind energy, EllipSys3D, and then verified against the experimental results from the MEXICO and NEW MEXICO wind tunnel experiments. By using the predicted torque as a global indicator, the optimal width of the distribution kernel for the actuator line is determined for different grid resolutions. Then the rotor is immersed in homogeneous isotropic turbulence and a shear layer turbulence with different turbulence intensities, allowing to determine how far downstream the effect of the distinct blades is discernible. This can be used as an indicator for the extents of the near wake for different flow 10 conditions.
This study evaluates the uncertainty in speed-up factors predicted using the Reynolds-Averaged Navier–Stokes equations to model flow over moderately complex forested terrain and considers its effect on the uncertainty in wind energy calculations. All simulations are solved using the open-source software openfoam v.2.4.0 with a modified k–ε turbulence closure. The forest drag effect is calculated with two models: a displacement height model and a canopy model that estimates the pressure loss due to the forest through analogy with porous media. Two years of concurrent wind data from three meteorological masts at a potential wind farm site in Canada are used for validation purposes. In all, these experimental data are compared with the predictions of four wind flow models: (A) a terrain only model, (B) a displacement height model, (C) a uniform forest canopy model, and (D) a non-uniform forest canopy model. Overall, the canopy models provide better agreement with the mean statistical results than the displacement height model. In this case, the 2.76% uncertainty in the speed-up factor associated with the wind flow predictions of the non-uniform forest distribution model leads to an uncertainty in the energy calculation of just 5.94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.